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Abstract Recent years have witnessed exciting progress in automatic face swap-
ping and editing. Many techniques have been proposed, facilitating the rapid devel-
opment of creative content creation. The emergence and easy accessibility of such
techniques, however, also cause potential unprecedented ethical and moral issues. To
this end, academia and industry proposed several effective forgery detection meth-
ods. Nonetheless, challenges could still exist. (1) Current facemanipulation advances
can produce high-fidelity fake videos, rendering forgery detection challenging. (2)
The generalization capability of most existing detection models is poor, particularly
in real-world scenarios where the media sources and distortions are unknown. The
primary difficulty in overcoming these challenges is the lack of amenable datasets
for real-world face forgery detection. Most existing datasets are either of a small
number, of low quality, or overly artificial. Meanwhile, the large distribution gap
between training data and actual test videos also leads to weak generalization ability.
In this chapter, we present our on-going effort of constructing DeeperForensics-1.0,
a large-scale forgery detection dataset, to address the challenges above. We discuss
approaches to ensure the quality and diversity of the dataset. Besides, we describe
the observations we obtained from organizing DeeperForensics Challenge 2020, a
real-world face forgery detection competition based onDeeperForensics-1.0. Specifi-
cally, we summarize thewinning solutions and provide some discussions on potential
research directions.
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14.1 Introduction

Face swapping has become an emerging topic in computer vision and graphics.
Indeed, many works [1, 4, 6, 41, 53, 76] on automatic face swapping have been pro-
posed in recent years. These efforts have circumvented the cumbersome and tedious
manual face editing processes, hence expediting the advancement in face editing.
At the same time, such enabling technology has also sparked legitimate concerns on
its potential for being misused and abused. The popularization of “DeepFakes” on
the Internet has further set off alarm bells among the general public and authorities,
in view of the conceivable perilous implications. Accordingly, countermeasures to
safeguard against these photorealistic fake videos become a dire need to be in place
promptly, especially innovations that can effectively detect videos that have been
manipulated.

Although academia and industry have contributed several effective face forgery
detection methods [54, 56, 63, 64, 93, 99], some challenges could still exist. First,
current face manipulation advances can produce high-fidelity fake videos, making
forgery detection challenging. Besides, the generalization capability of most exist-
ing detection models is poor, particularly in real-world scenarios where the media
sources and distortions are unknown. Meanwhile, the DeepFakes techniques will
keep evolving in the future. The better face editing quality will render forgery detec-
tion more challenging, entailing the increasing importance of the model generaliza-
tion.

In this chapter, we present our on-going efforts to address the challenges above.
The primary difficulty in overcoming these challenges is the lack of amenable
datasets.Working toward forgery detection, various groups have contributed datasets
(e.g., FaceForensics++ [81], Deep Fake Detection [13], and DFDC [23, 24]) com-
prising manipulated video footages. The availability of these datasets has undoubt-
edly provided essential avenues for research into forgery detection. Nonetheless, the
aforementioned datasets fall short in several ways. Videos in these datasets are either
of a small number, of low quality, or overly artificial. Understandably, these datasets
are inadequate to train a good model for effective forgery detection in real-world
scenarios. This is particularly true when current advances in human face editing are
able to producemore photorealistic videos than the ones in these datasets. On another
note, we observe a high similarity between training and test videos, in terms of their
distribution, in certain works [57, 81]. Their actual efficacy in detecting real-world
face forgery cases, which are much more variable and unpredictable, remains to be
further elucidated.

We believe that forgery detection models can only be enhanced when trained
with a dataset that is exhaustive enough to encompass as many potential real-
world variations as possible. To this end, we propose a large-scale dataset, named
DeeperForensics-1.0 [41], consisting of 60, 000 videos with a total of 17.6 million
frames for real-world face forgery detection. The main steps of our dataset construc-
tion are shown in Fig. 14.1. We set forth three yardsticks when constructing this
dataset: (1) Good quality. The dataset shall contain the videos that are more realistic
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Fig. 14.1 DeeperForensics-1.0 is a new large-scale dataset for real-world face forgery detection

and closer to the state-of-the-art DeepFakes video distributions. (Sections14.3.1 and
14.3.2) (2) Large scale. The dataset shall be made up of a large number of video sets.
(Section14.3.3) (3) High diversity. There shall be sufficient variations in the video
footages (e.g., compression, blurry, and transmission errors) to match those that may
be encountered in the real world (Sect. 14.3.3).

The major challenge in the preparation of this dataset is the lack of good-quality
video footages. Specifically, most publicly available videos are captured under an
unconstrained environment resulting in large variations, including but not limited
to suboptimal illumination, large occlusion of the target faces, and extreme head
poses. Importantly, the lack of the official informed consents from the video sub-
jects precludes the use of these videos, even for non-commercial purposes. On the
other hand, while some videos of manipulated faces are deceptively real, a larger
number remains easily distinguishable by human eyes. The latter is often caused by
model negligence toward appearance variations or temporal differences, leading to
preposterous and incongruous results.

We approach the aforementioned challenge from two perspectives. (1) Collect-
ing fresh face data from 100 individuals with informed consents (Sect. 14.3.1). (2)
Devising a novel end-to-end face swapping method, DeepFake Variational Auto-
Encoder (DF-VAE), to enhance existing videos (Sect. 14.3.2). In addition, we intro-
duce diversity into the video footages through the deliberate addition of distortions
and perturbations, simulating real-world scenarios. The DeeperForensics-1.0 dataset
also features a hidden test set, containing manipulated videos that achieve the high
deceptive ranking in user studies. The hidden test set is richer in distribution than
the publicly available training set, suggesting a better real-world forgery detection
setting.

Using the introduced DeeperForensics-1.0 dataset, we organized the Deeper-
Forensics Challenge 2020 [40] with the aim to advance the state of the art in face
forgery detection. Participants in this challenge were expected to develop robust
and generic methods for forgery detection in real-world scenarios. This chapter also
covers details of the DeeperForensics Challenge 2020, including the platform, eval-
uation metric, timeline, participants, results, etc. The winning solutions of top-3
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entries are included. We present discussions to take a closer look at the current status
and possible future development of real-world face forgery detection.

14.2 Related Work

In this section, we provide an overview of the current status of relevant studies
w.r.t.DeepFakes detection. The taxonomy of these works can be generally grouped
into four paradigms, namely DeepFakes generation methods, DeepFakes detection
methods, DeepFakes detection datasets, and DeepFakes detection benchmarks.

14.2.1 DeepFakes Generation Methods

The popularization of DeepFakes videos is attributed to the rapid development of
generative models. Existing state-of-the-art generative models are mainly built on
deep neural networks [26, 33, 48, 50, 74], showing impressive capability in capturing
high-level latent representations of visual data and synthesizing new images. Two
popular categories of generative models for face manipulation are auto-encoders
(AE) [33, 50] and generative adversarial networks (GAN) [26].

The vanilla AE [33] reconstructs images, aiming at learning latent codes in an
unsupervisedmanner, typically for dimensional reduction and feature learning.Auto-
encoders have been widely used to generate images since the development of varia-
tional auto-encoders (VAE) [49, 50]. Extensivewell-known off-the-shelf facemanip-
ulation software are based on auto-encoders, e.g., DeepFakes [4] and DeepFace-
Lab [1, 76]. These methods tend to learn the identity information for face manipula-
tion through the reconstruction process. However, they usually fit the specific domain
and cannot scale to multiple identities. The manipulation method DF-VAE [41] for
the DeeperForensics-1.0 dataset is based on variational auto-encoders. DF-VAE is an
end-to-end many-to-many face swapping method, which considers style matching
and temporal continuity for video manipulation.

Another category of generative models is GAN [26, 67, 79], where a generator
tries to fool a discriminator by refining the synthesized images continuously until
the discriminator fails to perceive them as fakes. GAN has been extensively applied
in face generation [43–45], image-to-image translation [17, 38, 39, 42, 104], style
transfer [36, 59], and semantic image synthesis [39, 42, 60, 75, 95]. For face manip-
ulation, the open-source DeepFakes software, faceswap-GAN [6], is a typical GAN-
basedmethod. It exploits adversarial losses to the denoising auto-encoder and applies
attention mechanisms to improve the clarity of the swapped faces. ReenactGAN [97]
introduced the notion of boundary latent space for robust many-to-one face reenact-
ment. Some recent GAN-based innovations were designed in the more challenging
face manipulation context, e.g., subject agnostic [72] and occlusion aware [53].
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14.2.2 DeepFakes Detection Methods

The development of face forgery detection approaches is constantly evolving along
with the advancement of face manipulation techniques. One of the early forgery
detection methods is [103]. They proposed a two-stream network for forgery detec-
tion. The initial system was trained to detect facial expression manipulations. Later
on, MesoNet was proposed in [10]. They introduced two different networks com-
posed of few layers in order to focus on the mesoscopic properties of the images.
This method was originally tested in their private database and has been proved to
be an effective approach in the FaceForensics benchmark [81]. A temporal-aware
framework for automatic fake video detection was discussed in [28]. They leveraged
the benefits of both convolutional neural networks (CNN) and recurrent neural net-
works (RNN). They integrated them into a single framework and averaged the results
for evaluation.

More recent forgery detection approaches mainly considered different artifacts
introduced during face manipulation. Some methods were based on visual artifacts,
e.g., face warping artifacts [56], dissonance of saturation [65], discrepancy between
the face and its context [73], region-based artifacts [87], and temporal inconsisten-
cies [91]. Some approaches considered noises fromgenerativemodels, e.g., GANfin-
gerprints [100], convolutional traces [27], and frequency-domain clues [78]. Others
exploited physiological signs as an important forgery detection basis. They utilized
eye blinking [55], head poses [99], heart rate [32], and emotions [68] as important
cues for effective face forgery detection.

Real-world face forgery detection, in which video sources and distortions are
highly unconstrained and unpredictable, remains less explored. Some studies [16,
54, 83, 93] have started to consider the model generalization issue for forgery
detection, which is crucial for real-world face forgery detection. The design of the
DeeperForensics-1.0 dataset [41] and the DeeperForensics Challenge 2020 [40] aims
to offer a benchmark and platform for a more systematic study about this problem.

14.2.3 DeepFakes Detection Datasets

Building a dataset for forgery detection requires a huge amount of effort on data
collection and manipulation. Early forgery detection datasets comprised images
captured under highly restrictive conditions, e.g., MICC_F2000 [11], Wild Web
dataset [101], and Realistic Tampering dataset [52].

Due to the urgent need for video-based face forgery detection, some research
groups have devoted their efforts to create video forensics datasets. UADFV [99]
contained 98 videos, i.e., 49 real videos from YouTube and 49 fake ones gener-
ated by FakeAPP [7]. DeepFake-TIMIT [51] manually selected 16 similar looking
pairs of people from VidTIMIT [82] database. For each of the 32 subjects, they
generated about 10 videos using low-quality and high-quality versions of faceswap-
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GAN [6], resulting in a total of 620 fake videos. Celeb-DF [57] included 408
YouTube videos, mostly of celebrities, from which 795 fake videos were synthe-
sized. FaceForensics++ [81] is the first large-scale face forensic dataset that con-
sisted of 4, 000 fake videos manipulated by four methods (i.e., DeepFakes [4],
Face2Face [86], FaceSwap [5], and NeuralTextures [85])), as well as 1, 000 real
videos from YouTube. Afterward, Google joined FaceForensics++ and contributed
Deep Fake Detection [13] dataset with 3, 431 real and fake videos from 28 actors.
Recently, Facebook invited 66 individuals and built the DFDC preview dataset [24],
which comprised 5, 214 original and tampered videos with three types of augmen-
tations.

To build the DeeperForensics-1.0 dataset, we invite 100 actors and collect high-
resolution (1920 × 1080) source data with these actors showing various poses and
expressions under different illuminations. 3DMM blendshapes [14] are taken as a
reference to supplement some exaggerated expressions. We obtain consents from all
the actors for using and manipulating their faces. A newly proposed end-to-end face
swapping method (i.e., DF-VAE) is exploited to improve the generated video quality.
Besides, seven types of perturbations at five intensity levels are applied to simulate
real-world scenes better. The dataset also includes a mixture of distortions to a single
video. In total, the DeeperForensics-1.0 dataset contains 60, 000 high-quality videos
with 17.6 million frames.

14.2.4 DeepFakes Detection Benchmarks

The FaceForensics benchmark [81] is a popular benchmark for facial manipula-
tion detection. The benchmark included six image-level face forgery detection base-
lines [10, 12, 18, 19, 25, 80]. TheFaceForensics benchmark added several distortions
to the videos by converting them into different compression rates. The benchmark
did not include different perturbation types or a mixture of them. Celeb-DF [57]
also provided a face forgery detection benchmark including seven methods [10, 18,
56, 64, 70, 99, 103] trained and tested on different datasets. In the aforementioned
benchmarks, the test set usually shares a similar distribution with the training set.
Such an assumption may inherently introduce biases and render the detection meth-
ods impractical for face forgery detection in real-world settings with much more
diverse and unknown fake videos.

The DeeperForensics-1.0 benchmark features a challenging hidden test set with
manipulated videos achieving high deceptive scores in user studies. The hidden test
set is richer in distribution than the publicly available training set to better simu-
late the real-world distribution. The benchmark includes the entries submitted to
the DeeperForensics Challenge 2020. The top-3 challenge winning solutions in this
benchmark are elaborated on in Sect. 14.4.5. Temporal information—a significant
cue for video forgery detection besides the single-frame quality—has been consid-
ered. In addition, readers are referred to [41] for more video-level forgery detection
baselines [15, 30, 34, 89, 92] in the DeeperForensics-1.0 benchmark.
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14.3 DeeperForensics-1.0 Dataset

This section introduces the DeeperForensics-1.0 dataset [41]. The dataset consists of
60, 000 videos with 17.6 million frames in total, including 50, 000 collected source
videos and 10, 000 manipulated videos. Toward building a dataset that is suitable for
real-world face forgery detection, DeeperForensics-1.0 is designed with the careful
consideration of quality, scale, and diversity. In Sects. 14.3.1 and 14.3.2, we discuss
the details of data collection and methodology (i.e., DF-VAE) to improve the quality
of data. In Sect. 14.3.3, we show our approaches to increase the scale and diversity
of samples.

14.3.1 Data Collection

Source data is the first factor that highly affects quality. Taking results in Fig. 14.2 as
an example, the source data collection increases the robustness of our face swapping
method to extreme poses, since videos on the Internet usually have limited head pose
variations.

We refer to the identity in the driving video as the “target” face and the identity
of the face that is swapped onto the driving video as the “source” face. Different
from previous works, we find that the source faces play a more critical role than the
target faces in building a high-quality dataset. Specifically, the expressions, poses,

YouTube Scource Target Swapped

Target SwappedCollected Source

Fig. 14.2 Comparison of face swapping results using an in-the-wildYouTube video or the collected
video as source data, with the same manipulation method and setting
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Fig. 14.3 Diversity in identities, poses, expressions, and illuminations in the collected source data
of DeeperForensics-1.0

and lighting conditions of source faces should be much richer in order to perform
robust face swapping. The data collection of DeeperForensics-1.0 mainly focuses
on source face videos. Figure14.3 shows the diversity in different attributes of the
collected source data.

We invite 100 paid actors to record the source videos. Similar to [13, 24], we
obtain consents from all the actors for using and manipulating their faces to avoid
the portrait right issues. The participants are carefully selected to ensure variability in
genders, ages, skin colors, and nationalities. We maintain a roughly equal proportion
w.r.t.each of the attributes above. In particular, we invite 55 males and 45 females
from 26 countries. Their ages range from 20 to 45 years old to match the most
common age group appearing on real-world videos. The actors have four typical
skin tones: white, black, yellow, and brown, with ratio 1:1:1:1. All faces are clean
without glasses or decorations.

A professional indoor environment is built for a more controllable data collection.
We only use the facial regions (detected and cropped by LAB [96]) of the source data;
thus, the background is neglected. We set seven HD cameras from different angles:
front, left, left-front, right, right-front, oblique-above, and oblique-below. The reso-
lution of the recorded videos is high (1920 × 1080). The actors are trained in advance
to keep the collection process smooth. We request the actors to turn their heads and
speak naturally with eight expressions: neutral, angry, happy, sad, surprise, con-
tempt, disgust, and fear. The head poses range from −90◦ to +90◦. Furthermore, the
actors are asked to perform 53 expressions defined by 3DMM blendshapes [14] (see
Fig. 14.4) to supplement some extremely exaggerated expressions.When performing
3DMM blendshapes, the actors also speak naturally to avoid excessive frames that
show a closed mouth.

In addition to expressions and poses,we systematically set nine lighting conditions
from various directions: uniform, left, top-left, bottom-left, right, top-right, bottom-
right, top, and bottom. The actors are only asked to turn their heads under the uniform
illumination, so the lighting remains unchanged on specific facial regions to avoid
many duplicated data samples recorded by the cameras set at different angles. In
total, the collected source data of DeeperForensics-1.0 comprise over 50, 000 videos
with around 12.6 million frames.
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Fig. 14.4 Examples of 3DMM blendshapes and the respective collected source data in
DeeperForensics-1.0

14.3.2 DeepFake Variational Auto-Encoder

To improve the quality of manipulated data in DeeperForensics-1.0, we consider
three key requirements in formulating a high-fidelity face swapping method: (1) The
method should be generic and scalable to generate a large number of videos with high
quality. (2) The problem of face style mismatch caused by the appearance variations
should be addressed. Some failure cases in existing datasets are shown in Fig. 14.5.
(3) Temporal continuity of generated videos should be taken into consideration.

Based on the aforementioned requirements, we propose DeepFake Variational
Auto-Encoder (DF-VAE), a learning-based face swapping framework. DF-VAE con-

Fig. 14.5 Examples of style mismatch problems in several existing face forensics datasets



312 L. Jiang et al.

sists of three main parts, namely a structure extraction module, a disentangled mod-
ule, and a fusion module. The details of DF-VAE framework are introduced in this
section.

Disentanglement of structure and appearance. The first step of DF-VAE method
is face reenactment—animating the source face with similar expression as the target
face, without any paired data. Face swapping can be considered as a subsequent step
of face reenactment that performs fusion between the reenacted face and the target
background. For the robust and scalable face reenactment, we should disentangle
the structure (i.e., expression and pose) and appearance (i.e., texture, skin color, etc.)
representations of a face. This disentanglement is difficult since the structure and
appearance representations are far from independent.

Let x1:T ≡ {x1, x2, ..., xT } ∈ X be a sequence of source face video frames, and
y1:T ≡ {y1, y2, ..., yT } ∈ Y be the sequence of corresponding target face video
frames. We first simplify our problem and only consider two specific snapshots
at time t , xt , and yt . Let x̃t , ỹt , dt represent the reconstructed source face, the recon-
structed target face, and the reenacted face, respectively.

Consider the reconstruction procedure of the source face xt . Let sx denote the
structure representation and ax denote the appearance information. The face gen-
erator can be depicted as the posteriori estimate pθ (xt |sx , ax ). The solution of our
reconstruction goal, marginal log-likelihood x̃t ∼ log pθ (xt ), by a common varia-
tional auto-encoder (VAE) [50] can be written as follows:

log pθ (xt ) = DKL
(
qφ (sx , ax |xt ) ‖pθ (sx , ax |xt )

)

+L (θ, φ; xt ) ,
(14.1)

where qφ is an approximate posterior to achieve the evidence lower bound (ELBO)
in the intractable case, and the second RHS term L (θ, φ; xt ) is the variational lower
bound w.r.t.both the variational parameters φ and generative parameters θ .

In Eq. (14.1), we assume that both sx and ax are latent priors computed by the
same posterior xt . However, the separation of these two variables in the latent space is
rather difficult without additional conditions. Therefore, DF-VAE employs a simple
yet effective approach to disentangle these two variables.

The blue arrows in Fig. 14.6 demonstrate the reconstruction procedure of the
source face xt . Instead of feeding a single source face xt , we sample another source
face x ′ to construct unpaired data in the source domain. To make the structure rep-
resentation more evident, we use the stacked hourglass networks [69] to extract
landmarks of xt in the structure extraction module and get the heatmap x̂t . Then we
feed the heatmap x̂t to the Structure Encoder Eα , and x ′ to the Appearance Encoder
Eβ . We concatenate the latent representations (small cubes in red and green) and
feed it to the Decoder Dγ . Finally, we get the reconstructed face x̃t , i.e., marginal
log-likelihood of xt .

Therefore, the latent structure representation sx in Eq. (14.1) becomes a more evi-
dent heatmap representation x̂t , which is introduced as a new condition. The unpaired
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Fig. 14.6 The main framework of DeepFake Variational Auto-Encoder (DF-VAE). In training,
we reconstruct the source and target faces in blue and orange arrows, respectively, by extracting
landmarks and constructing an unpaired sample as the condition. Optical flow differences are
minimized after reconstruction to improve temporal continuity. In inference, we swap the latent
codes and get the reenacted face in green arrows. Subsequent MAdaIN module fuses the reenacted
face and the original background resulting in the swapped face

sample x ′ with the same identity w.r.t.xt is another condition, being a substitute for
ax . Equation (14.1) can be rewritten as a conditional log-likelihood:

log pθ

(
xt |x̂t , x ′) = DKL

(
qφ

(
zx |xt , x̂t , x ′) ‖pθ

(
zx |xt , x̂t , x ′))

+L
(
θ, φ; xt , x̂t , x ′) .

(14.2)

The first RHS term KL-divergence is non-negative, we get the following:

log pθ

(
xt |x̂t , x ′) ≥ L(θ, φ; xt , x̂t , x ′)

= Eqφ(zx |xt ,x̂t ,x ′)
[− log qφ

(
zx |xt , x̂t , x ′) + log pθ

(
xt , zx |x̂t , x ′)] ,

(14.3)

and L(θ, φ; xt , x̂t , x ′) can also be written as follows:

L
(
θ, φ; xt , x̂t , x ′) = − DKL

(
qφ

(
zx |xt , x̂t , x ′) ‖pθ

(
zx |x̂t , x ′))

+ Eqφ(zx |xt ,x̂t ,x ′)
[
log pθ

(
xt |zx , x̂t , x ′)] .

(14.4)

We let the variational approximate posterior be a multivariate Gaussian with a
diagonal covariance structure:

log qφ

(
zx |xt , x̂t , x ′) ≡ logN (

zx ;μ, σ 2I
)
, (14.5)

where I is an identity matrix. Exploiting the reparameterization trick [50], the non-
differentiable operation of sampling can become differentiable by an auxiliary vari-
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able with independent marginal. In this case, zx ∼ qφ

(
zx |xt , x̂t , x ′) is implemented

by zx = μ + σε where ε is an auxiliary noise variable ε ∼ N (0, 1). Finally, the
approximate posterior qφ(zx |xt , x̂t , x ′) is estimated by the separated encoders, Struc-
ture Encoder Eα and Appearance Encoder Eβ , in an end-to-end training process by
standard gradient descent.

We discuss the whole workflow of reconstructing the source face. In the target
face domain, the reconstruction procedure is the same, as shown by orange arrows in
Fig. 14.6. During training, the network learns structure and appearance information
in both the source and the target domains. It is noteworthy that even if both yt and
x ′ belong to arbitrary identities, our effective disentangled module is capable of
learning meaningful structure and appearance information of each identity. During
inference, we concatenate the appearance prior of x ′ and the structure prior of yt
(small cubes in red and orange) in the latent space, and the reconstructed facedt shares
the same structurewith yt and keeps the appearance of x ′. DF-VAE framework allows
concatenations of structure and appearance latent codes extracted from arbitrary
identities in inference and permits many-to-many face reenactment.

In summary, DF-VAE is a conditional variational auto-encoder [49] with robust-
ness and scalability. It conditions on two posteriors in different domains. In the
disentangled module, the separated design of two encoders Eα and Eβ , the explicit
structure heatmap, and the unpaired data construction jointly force Eα to learn struc-
ture information and Eβ to learn appearance information.

Style matching and fusion. To fix the obvious style mismatch problems as shown
in Fig. 14.5, we adopt a masked adaptive instance normalization (MAdaIN) module
in DF-VAE. We place a typical AdaIN [35] network after the reenacted face dt . In
the face swapping scenario, we only need to adjust the style of the face area to match
the original background. Therefore, we use a mask mt to guide AdaIN [35] network
to focus on style matching of the face area. To avoid boundary artifacts, we apply
Gaussian Blur to mt and get the blurred mask mb

t .
In our face swapping context, dt is the content input of MAdaIN, and yt is the

style input. MAdaIN adaptively computes the affine parameters from the face area
of the style input:

MAdaIN (c, s) = σ (s)

(
c − μ (c)

σ (c)

)
+ μ (s) , (14.6)

where c = mb
t · dt , s = mb

t · yt . With the low-cost MAdaIN module, we reconstruct
dt again by Decoder Dδ . The blurred maskmb

t is used again to fuse the reconstructed
image with the background of yt . At last, we get the swapped face dt .

The MAdaIN module is jointly trained with the disentangled module in an end-
to-end manner. Thus, by a single model, DF-VAE can perform many-to-many face
swapping with obvious reduction of style mismatch and facial boundary artifacts
(see Fig. 14.7 for the face swapping between three source identities and three target
identities). Even if there are multiple identities in both the source domain and the
target domain, the quality of face swapping does not degrade.
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Fig. 14.7 Many-to-many (three-to-three) face swapping by a singlemodel with obvious reduction
of style mismatch problems. This figure shows the results between three source identities and three
target identities. The whole process is end-to-end

Temporal consistency constraint. Temporal discontinuity of the fake videos gener-
ated by certain facemanipulationmethods leads to obvious flickering of the face area,
making them easy to be spotted by forgery detection methods and human eyes. To
improve temporal continuity, DF-VAE lets the disentangled module learn temporal
information of both the source face and the target face.

For simplification, wemake aMarkov assumption that the generation of the frame
at time t sequentially depends on its previous P frames x(t−p):(t−1). We set P = 1 to
balance quality improvement and training time.

To build the relationship between a current frame and previous ones, we further
make an intuitive assumption that the optical flows should remain unchanged after
reconstruction. We use FlowNet 2.0 [37] to estimate the optical flow x̃ f w.r.t. x̃t
and xt−1 and x f w.r.t.xt and xt−1. Since face swapping is sensitive to minor facial
details which can be greatly affected by flow estimation, we do not warp xt−1 by
the estimated flow like [94]. Instead, we minimize the difference between x̃ f and
x f to improve temporal continuity while keeping stable facial detail generation. To
this end, we propose a new temporal consistency constraint, which can be written as
follows:

Ltemporal = 1

CHW
‖x̃ f − x f ‖1, (14.7)

where C = 2 for a common form of optical flow.
We only discuss the temporal continuity w.r.t.the source face in this section. The

case of the target face is the same. If multiple identities exist in one domain, temporal
information of all these identities can be learned in an end-to-end manner.
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14.3.3 Scale and Diversity

The extensive data collection and the introduced DF-VAE method are designed to
improve the quality of manipulated videos in the DeeperForensics-1.0 dataset. In
this section, we mainly discuss the scale and diversity aspects.

The DeeperForensics-1.0 dataset contains 10, 000 manipulated videos with 5
million frames. We take 1, 000 refined YouTube videos collected by FaceForen-
sics++ [81] as the target videos. Each face of our collected 100 identities is swapped
onto 10 target videos; thus, 1, 000 raw manipulated videos are generated directly by
DF-VAE in an end-to-end process. Thanks to the scalability and multimodality of
DF-VAE, the time overhead of model training and data generation is reduced to 1/5
compared to the common DeepFakes methods, with no degradation in quality. Thus,
a larger scale dataset construction is possible.

To enhance diversity, we apply various perturbations existing in real scenes.
Specifically, as shown in Fig. 14.8, seven types of distortions defined in ImageQuality
Assessment (IQA) [58, 77] are included. Each distortion is divided into five intensity
levels.We apply random-type distortions to the 1, 000 rawmanipulated videos at five
different intensity levels, producing a total of 5, 000 manipulated videos. Besides, an
additional of 1, 000 robust manipulated videos are generated by adding random-type,
random-level distortions to the 1, 000 rawmanipulated videos. Moreover, in contrast
to other datasets [13, 51, 57, 81, 99], each sample of another 3, 000 manipulated
videos in DeeperForensics-1.0 is subjected to a mixture of more than one distortion
(examples shown in Fig. 14.8). The variety of perturbations improves the diversity
of DeeperForensics-1.0 to approximate the data distribution of real-world scenarios
better.

Fig. 14.8 Seven types of perturbations and the mixture of two (Gaussian blur, JPEG compression) /
three (Gaussian blur, JPEG compression, white Gaussian noise in color components) / four (Gaus-
sian blur, JPEG compression, white Gaussian noise in color components, color saturation change)
perturbations in DeeperForensics-1.0.
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14.3.4 Hidden Test Set

Several existing benchmarks [57, 81] have demonstrated high-accuracy face forgery
detection results using their proposed datasets. However, the sources and imposed
distortions of DeepFakes videos are much more variable and unpredictable in real-
world scenarios. Due to the huge biases introduced by a close distribution between
the training and test sets, the actual efficacy of these studies [57, 81] in detecting
real-world face forgery cases remains to be further elucidated.

An indispensable component of DeeperForensics-1.0 is its introduced hidden test
set, which is richer in distribution than the publicly available training set. The hid-
den test set suggests a better real-world face forgery detection setting: (1) Multiple
sources. Fake videos in the wild should be manipulated by different unknown meth-
ods; (2) High quality. Threatening fake videos should have high quality to deceive
human eyes; (3) Diverse distortions. Different perturbations should be taken into
consideration. The ground truth labels are hidden and are used on the host server to
evaluate the accuracy of detection models. The hidden test set will evolve by includ-
ingmore challenging samples along with the development of DeepFakes technology.

Overall, DeeperForensics-1.0 is a new large-scale dataset consisting of over
60, 000 videos with 17.6 million frames for real-world face forgery detection.Good-
quality source videos and manipulated videos constitute two main contributions of
this dataset. The high-diversity perturbations applying to the manipulated videos
enhance the robustness of DeeperForensics-1.0 to simulate real scenes. The dataset
has been released, free to all research communities, for developing face forgery
detection and more general human-face-related research.1,2

14.4 DeeperForensics Challenge 2020

In this section, we detail the DeeperForensics Challenge 2020 on real-world face
forgery detection, which aims at soliciting innovations to advance the state of the art
in DeepFakes detection. The challenge uses the DeeperForensics-1.0 dataset intro-
duced above, and the model evaluation is performed online on the current version of
the hidden test set. Participants are expected to devise robust and generic methods for
forgery detection in real-world scenarios. The challenge results constitute an essen-
tial part of the DeeperForensics-1.0 benchmark. We describe the detailed challenge
information and summarize the winning solutions to take a closer look at the current
status and possible future development of real-world face forgery detection.

1 GitHub (dataset and code): https://github.com/EndlessSora/DeeperForensics-1.0.
2 Project page: https://liming-jiang.com/projects/DrF1/DrF1.html.

https://github.com/EndlessSora/DeeperForensics-1.0
https://liming-jiang.com/projects/DrF1/DrF1.html
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14.4.1 Platform

The DeeperForensics Challenge 2020 is hosted on the CodaLab platform3 in con-
junction with ECCV 2020, the second Workshop on Sensing, Understanding, and
Synthesizing Humans.4 The online evaluation is conducted using Amazon Web Ser-
vices (AWS).5

First, participants register their teams on the CodaLab challenge website. Then,
they are requested to submit their models to the AWS evaluation server (with one 16
GB Tesla V100 GPU for each team) to perform the online evaluation on the hidden
test set. When the evaluation is done, participants receive the encrypted prediction
files through an automatic email. Finally, they submit the result file to the CodaLab
challenge website.

14.4.2 Challenge Dataset

The DeeperForensics Challenge 2020 employs the DeeperForensics-1.0 dataset [41]
that was proposed in CVPR 2020. The detailed information of this dataset has been
provided in Sect. 14.3. The evaluation of the challenge is performed online on the
current version of the hidden test set (Sect. 14.3.4).

All the participants using the DeeperForensics-1.0 dataset should agree to its
Terms of Use [9]. They are recommended but not restricted to train their algorithms
on DeeperForensics-1.0. The use of any external datasets should be disclosed and
follow the Terms of Use.

14.4.3 Evaluation Metric

Similar to Deepfake Detection Challenge (DFDC) [2], the DeeperForensics Chal-
lenge 2020 uses the binary cross-entropy loss (BCELoss) to evaluate the performance
of face forgery detection models:

BCELoss = − 1

N

N∑

i=1

[
yi · log (p (yi )) + (1 − yi ) · log (1 − p (yi ))

]
, (14.8)

where N is the number of videos in the hidden test set, yi denotes the ground truth
label of video i (fake: 1, real: 0), and p (yi ) indicates the predicted probability that
video i is fake. A smaller BCELoss score is better, which directly contributes to a

3 Challenge website: https://competitions.codalab.org/competitions/25228.
4 Workshop website: https://sense-human.github.io/index_2020.html.
5 Online evaluation website: https://aws.amazon.com.

https://competitions.codalab.org/competitions/25228
https://sense-human.github.io/index_2020.html
https://aws.amazon.com
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higher ranking. If the BCELoss score is the same, the one with less runtime will
achieve a higher ranking. To avoid an infinite BCELoss that is both too confident
and wrong, the score is bounded by a threshold value.

14.4.4 Timeline

The DeeperForensics Challenge 2020 lasted for nine weeks—eight weeks for the
development phase and one week for the final test phase.

The challenge officially started at the ECCV 2020 SenseHuman Workshop on
August 28, 2020, and it immediately entered the development phase. In the devel-
opment phase, the evaluation is performed on the test-dev hidden test set, which
contains 1, 000 videos representing general circumstances of the full hidden test set.
The test-dev hidden test set is used to maintain a public leaderboard. Participants can
conduct four online evaluations (each with 2.5h of runtime limit) per week.

The final test phase started on October 24, 2020. The evaluation is conducted on
the test-final hidden test set, containing 3, 000 videos (also including test-dev videos)
with a similar distribution as test-dev, for the final competition results. A total of two
online evaluations (each with 7.5h of runtime limit) are allowed. The final test phase
ended on October 31, 2020.

Finally, the challenge results were announced in December 2020. In total, 115
participants registered for the competition, and 25 teams made valid submissions.

14.4.5 Results and Solutions

Among the 25 teamswhomade valid submissions,many participants achieve promis-
ing results.We show the final results of the top-5 teams in Table14.1. In the following
subsections, we present the winning solutions of top-3 entries.

Table 14.1 Final results of the top-5 teams in the DeeperForensics Challenge 2020. The runtime
is shown in seconds.

Ranking TeamName UserName BCELoss↓ Runtime↓
1 Forensics BokingChen 0.2674 7690

2 RealFace Iverson 0.3699 11368

3 VISG zz110 0.4060 11012

4 jiashangplus jiashangplus 0.4064 16389

5 Miao miaotao 0.4132 19823
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Fig. 14.9 The framework of the first-place solution in the DeeperForensics Challenge 2020

• Solution of First Place

As shown in Fig. 14.9, the method designed by the champion team contains three
stages, namely Face Extraction, Classification, and Output.

Face Extraction. They first extract 15 frames from each video at equal intervals
using VideoCapture of OpenCV. Then, they use the face detector MTCNN [102] to
detect the face region of each frame and expand the region by 1.2 times to crop the
face image.

Classification. They define the prediction of the probability that the face is fake
as the face score. They use EfficientNet [84] as the backbone, which was proven
effective in the Deepfake Detection Challenge (DFDC) [2]. The results of three
models (EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2) are ensembled for
each face.

Output. The final output score of a video is the predicted probability that the video
is fake, which is calculated by the average of face scores for the extracted frames.

Implementation Details. The team employs EfficientNet pre-trained on ImageNet
as the backbone. They select EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2
for the model ensemble. In addition to DeeperForensics-1.0, they use some other
public datasets, i.e., UADFV [99], Deep Fake Detection [13], FaceForensics++ [81],
Celeb-DF [57], and DFDC Preview [24]. They balance the class samples with the
down-sampling mode. The code of the champion solution has been made publicly
available.6

– Training: Inspired by the DFDC winning solution, appropriate data augmentation
could contribute to better results. As for the data augmentation, the champion team
uses the perturbation implementation in DeeperForensics-1.0 [8] during training.
They only apply the image-level distortions: color saturation change (CS), color
contrast change (CC), local block-wise (BW), white Gaussian noise in color compo-
nents (GNC), Gaussian blur (GB), and JPEG compression (JPEG). They randomly
mix up these distortions with a probability of 0.2. Besides, they also try other data

6 https://github.com/beibuwandeluori/DeeperForensicsChallengeSolution.

https://github.com/beibuwandeluori/DeeperForensicsChallengeSolution
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Fig. 14.10 The framework of the second-place solution in the DeeperForensics Challenge 2020

augmentation [3], but the performance improvement is slim.The images are resized to
224 × 224. The batch size is 128, and the total training epoch is 50. They useAdamW
optimizer [62] with initial learning rate of 0.001. Label smoothing is applied with a
smoothing factor of 0.05.

– Testing: The testing pipeline follows the three stages in Fig. 14.9. They clip the
prediction score of each video in a range of [0.01, 0.99] to reduce the large loss
caused by the prediction errors. In addition to the best BCELoss score, their fastest
execution speed may be attributed to the use of the faster face extractor MTCNN and
the ensemble of three image-level models with fewer parameters.

• Solution of Second Place

Face manipulated video contains two types of forgery traces, i.e., image-level arti-
facts and video-level artifacts. The former refers to the artifacts such as blending
boundaries and abnormal textures within image, while the latter is the face jitter
problem between video frames. Most previous works only focused on artifacts in
a specific modality and lacked consideration of both. The team in the second place
proposes to use an attention mechanism to fuse the temporal information in videos
and further combine it with an image model to achieve better results.

The overall framework of their method is shown in Fig. 14.10. First, they use
RetinaFace [22] with 20% margin to detect faces in video frames. Then, the face
sequence is fed into an image-based model and a video-based model, where the
backbones are both EfficientNet-b5 [84] with NoisyStudent [98] pre-trainedweights.
The image-basedmodel predicts frame by frame and takes themedian of probabilities
as the prediction. The video-based model takes the entire face sequence as the input
and adopts an attention module to fuse the temporal information between frames.
Finally, the per-video prediction score is obtained by averaging the probabilities
predicted by the above two models.

Implementation Details. The team implements the proposed method via PyTorch.
All the models are trained on 8 NVIDIA Tesla V100 GPUs. In addition
to the DeeperForensics-1.0 dataset, they use three external datasets, i.e.,
FaceForensics++ [81], Celeb-DF [57], and Diverse Fake Face Dataset [21]. They
used the official splits provided by the above datasets to construct the training, val-
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idation, and test sets. They balance the positive and negative samples through the
down-sampling technique.
– Training: The second-place team uses the following data augmentations: Ran-
dAugment [20], patch Gaussian [61], Gaussian blur, image compression, random
flip, random crop, and random brightness contrast. They also employ the perturba-
tion implementation in DeeperForensics-1.0 [8]. For the image-based model, they
train a classifier based on EfficientNet-b5 [84], using binary cross-entropy loss as the
loss function. They adopt a two-stage training strategy for the video-based model.
In stage-1, they train an image-based classifier based on EfficientNet-b5. In stage-2,
they fix the model parameters trained in stage-1 to serve as face feature extractor and
introduce an attention module to learn temporal information via nonlinear transfor-
mations and softmax operations. The input of the network is the face sequence (i.e., 5
frames per video) in stage-2, and only the attention module and classification layers
are trained. The binary cross-entropy loss is adopted as the loss function. The input
size is scaled to 320 × 320. The Adam optimizer [47] is used with a learning rate of
0.0002, β1 = 0.9, β2 = 0.999, and weight decay of 0.00001. The batch size is 32.
The total number of training epochs is set to 20, and the learning rate is halved every
5 epochs.
– Testing: They sample 10 frames at equal intervals for each video and detect faces
by RetinaFace [22] as in the training phase. Then, the face images are resized to
320 × 320. Test-time augmentation (TTA) (e.g., flip) is applied to get 20 images (10
original and 10 flipped), which are fed into the network to get the prediction score.
They clip the prediction score of each video to [0.01, 0.99] to avoid excessive losses
on extreme error samples.

• Solution of Third Place

Similar to the second-place entry, the team in the third place also utilize the poor
temporal consistency in existing face manipulation techniques. To this end, they
propose to use a 3D convolutional neural network (3DCNN) to capture spatial-
temporal features for forgery detection. The framework of their method is shown in
Fig. 14.11.

Implementation Details. First, the team crops faces in the video frames using the
MTCNN [102] face detector. They combine all the cropped face images into a face
video clip. Each video clip is then resized to 64 × 224 × 224 or 64 × 112 × 112.
Various data augmentations are applied, including Gaussian blur, white Gaussian
noise in color components, random crop, random flip, etc. Then, they use the pro-
cessed video clips as the input to train a 3D convolutional neural network (3DCNN)
using the cross-entropy loss. They examine three kinds of networks, I3D [15], 3D
ResNet [29], and R(2+1)D [90]. These models are pre-trained on the action recogni-
tion datasets, e.g., kinetics [46]. In addition to DeeperForensics-1.0, they use three
external public face manipulation datasets, i.e., the DFDC dataset [23], Deep Fake
Detection [13], and FaceForensics++ [81].
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Fig. 14.11 The framework of the third-place solution in the DeeperForensics Challenge 2020

14.5 Discussion

In this chapter,we have introduced a new large-scale dataset namedDeeperForensics-
1.0. The dataset facilitates the research of face forgery detection in real-world sce-
narios. We have also presented several methods that consider different potential
aspects in developing a robust face forgery detection model. Winning solutions of
the DeeperForensics Challenge 2020 have achieved promising performance.

In summary, there are three key points inspired by these methods that could
improve real-world face forgery detection. (1) Strong backbone. Backbone selec-
tion for a forgery detection model is important. The high-performance winning solu-
tions are based on state-of-the-art EfficientNet. (2) Diverse augmentations. Applying
appropriate data augmentations may better simulate real-world scenarios and boost
themodel performance. (3) Temporal information. Since the primary detection target
is the fake videos, temporal information can be a critical clue to distinguish the real
from the fake.

Despite the promising results, we believe that there is still much room for improve-
ment in the real-world face forgery detection task. (1) More suitable and diverse data
augmentations may contribute to a better simulation of real-world data distribution.
(2) Developing a robust detection method that can cope with unseen manipulation
methods and distortions is a critical problem. At this stage, we observe that the model
training is data-dependent. Although data augmentations can help improve the per-
formance to a certain extent, the generalization ability of most forgery detection
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models is still poor. (3) Different artifacts in the DeepFakes videos (e.g., checker-
board Artifacts and fusion boundary artifacts) remain rarely explored.

14.6 Further Reading

Interested readers are referred to the following further readings:

• [41] formore detailed information about theDeeperForensics-1.0 dataset andmore
detection baselines in theDeeperForensics-1.0 video forgery detection benchmark.

• [40] for more detailed information about the DeeperForensics Challenge 2020.
• [23, 31, 57, 81] for other closely related DeepFakes detection datasets.
• [66, 71, 88] for surveys on DeepFakes creation and detection.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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