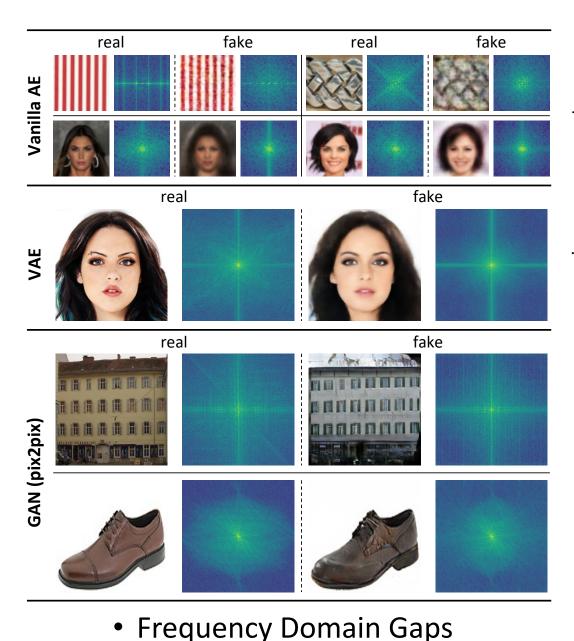
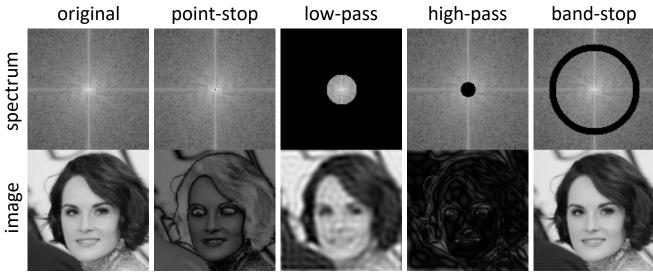
Focal Frequency Loss for Image Reconstruction and Synthesis

Liming Jiang¹ Bo Dai¹ Wayne Wu² Chen Change Loy¹

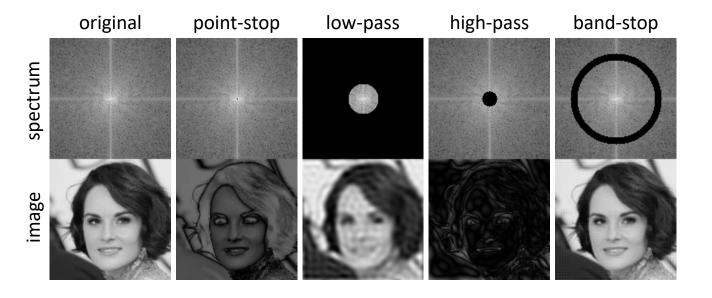
¹S-Lab, Nanyang Technological University ²SenseTime Research

{liming002, bo.dai, ccloy}@ntu.edu.sg wuwenyan@sensetime.com




Motivation

- Standard Bandlimiting: "Missing Frequencies"
 - 1. Despite remarkable performance, gaps between the real and fake still exist.
 - 2. Some gaps are visible, while others may only be revealed through the frequency spectrum analysis.
 - 3. Inherent bias of neural networks: "spectral bias", "F-Principle", etc.


Methodology: Step 1

Frequency Representation of Images

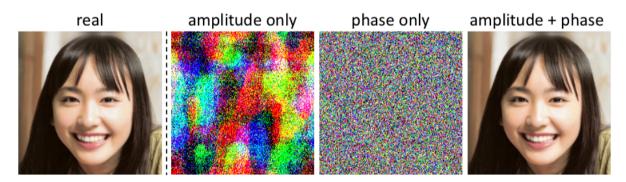
- Discrete Fourier transform (DFT):

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)},$$

$$e^{-i2\pi\left(\frac{ux}{M} + \frac{vy}{N}\right)} = \cos 2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right) - i\sin 2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right).$$

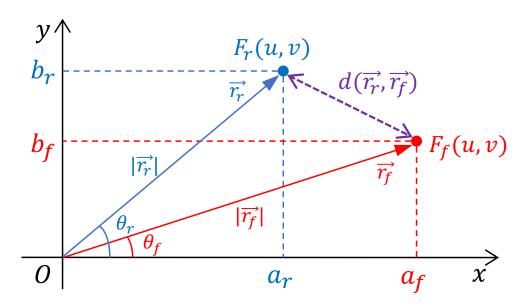
Methodology: Step 2

Frequency Distance


$$F(u, v) = R(u, v) + I(u, v) i = a + bi$$

- Amplitude:

$$|F(u,v)| = \sqrt{R(u,v)^2 + I(u,v)^2} = \sqrt{a^2 + b^2}$$


- Phase:

$$\angle F(u, v) = \arctan\left(\frac{I(u, v)}{R(u, v)}\right) = \arctan\frac{b}{a}$$

Single-image reconstruction

- Definition:

For a single frequency,

$$d(\vec{r_r}, \vec{r_f}) = ||\vec{r_r} - \vec{r_f}||_2^2 = |F_r(u, v) - F_f(u, v)|^2.$$

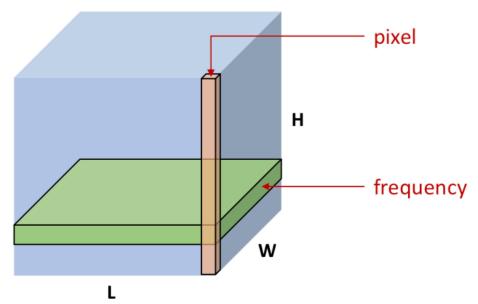
For the real and fake images,

$$d(F_r, F_f) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} |F_r(u, v) - F_f(u, v)|^2$$

Methodology: Step 3

Dynamic Spectrum Weighting

- Spectrum weight matrix ($\alpha = 1$ by default):


$$w(u,v) = |F_r(u,v) - F_f(u,v)|^{\alpha}$$

- The *full* form of the focal frequency loss (FFL):

$$FFL = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} w(u,v) |F_r(u,v) - F_f(u,v)|^2.$$

* Other variants of FFL for the flexibility: adjusting α , patch-based FFL, ...

- More intuitive illustration:

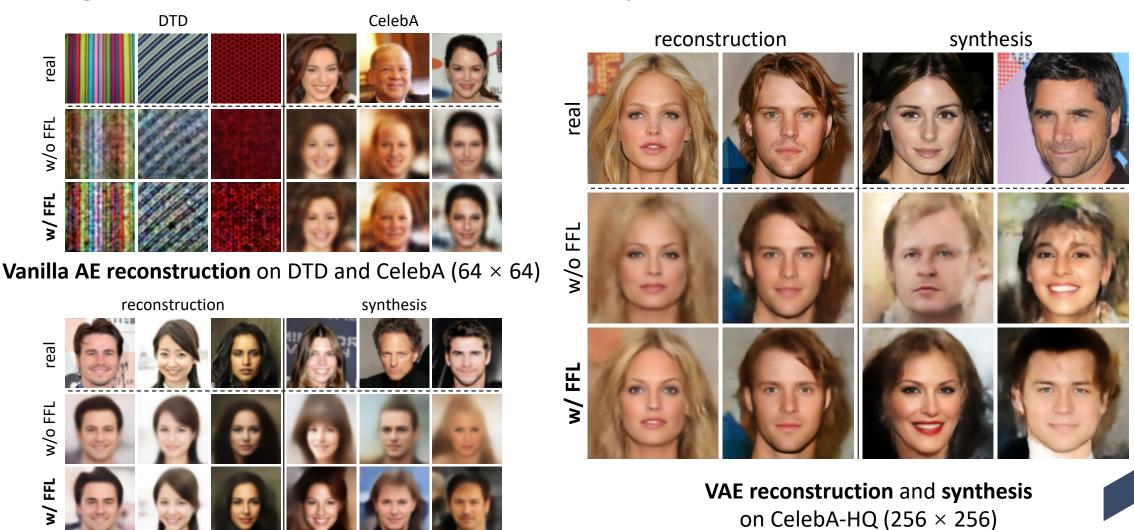
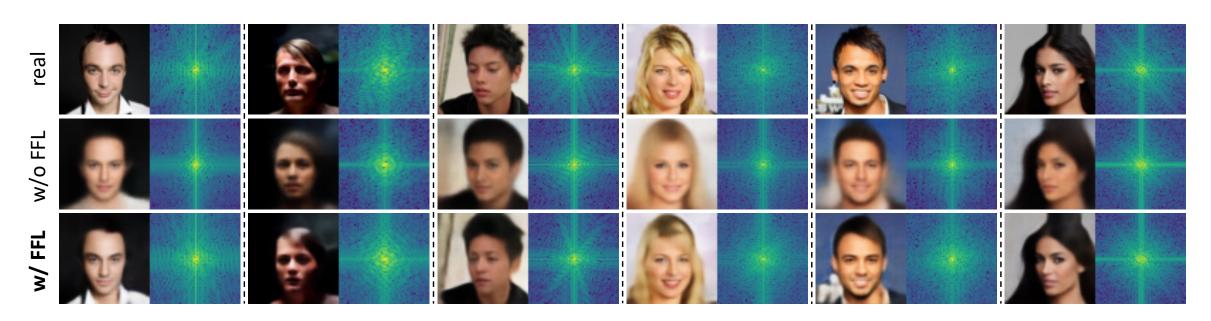
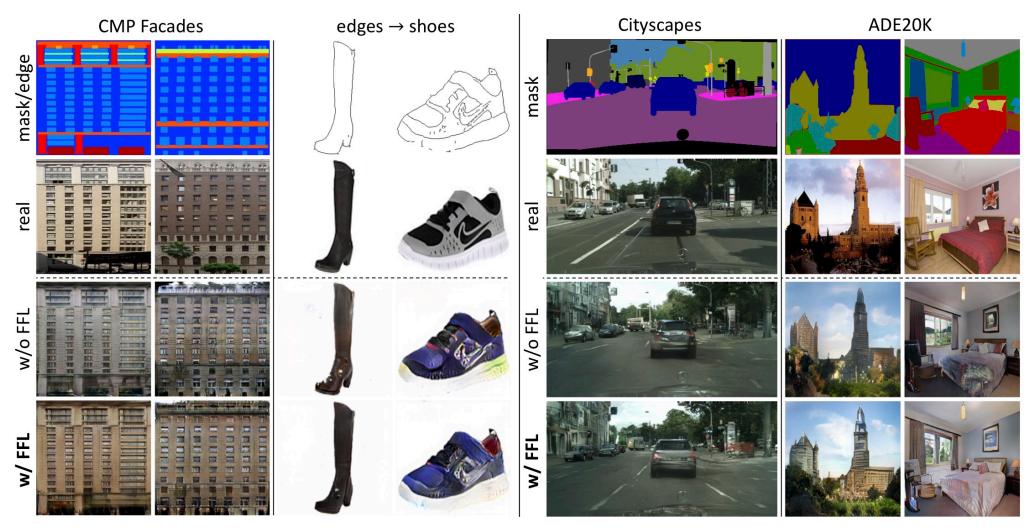


Image Reconstruction and Unconditional Synthesis (Autoencoders)


VAE reconstruction and **synthesis** on CelebA (64×64)

Analysis on Frequency Domain Gaps (VAE)

As an example, frequency domain gaps are narrowed by FFL for VAE image reconstruction on CelebA



Conditional Image Synthesis (pix2pix | SPADE)

GAN-based image-to-image translation on various datasets (256 pix in short edge)

Potential on the State of the Art (StyleGAN2)

StyleGAN2 unconditional image synthesis on CelebA-HQ (256 \times 256)

High-Resolution Examples (StyleGAN2)

Synthesized images by StyleGAN2 trained with FFL on CelebA-HQ (1024×1024)

Quantitative Evaluations

Vanilla AE image reconstruction

Dataset	FFL	PSNR↑	SSIM↑	LPIPS↓	FID↓	LFD↓
DTD	w/o	20.133	0.407	0.414	246.870	14.764
	w/	20.151	0.400	0.404	240.373	14.760
CelebA	w/o	20.044	0.568	0.237	97.035	14.785
	w/	21.703	0.642	0.199	83.801	14.403

VAE image reconstruction

Dataset	FFL	PSNR↑	SSIM↑	LPIPS↓	FID↓	LFD↓
CelebA	w/o	19.961	0.606	0.217	69.900	14.804
	w/	22.954	0.723	0.143	49.689	14.115
CelebA-	w/o	21.310	0.616	0.367	71.081	17.266
HQ	w/	22.253	0.637	0.344	59.470	17.049

VAE unconditional image synthesis

Dataset	FFL	FID↓	IS↑
CelebA	w/o	80.116	1.873
	w/	71.050	2.010
CelebA-	w/o	93.778	2.057
HQ	w/	84.472	2.060

pix2pix image-to-image translation

Dataset	FFL	FID↓	IS↑
CMP Facades	w/o	128.492	1.571
	w/	123.773	1.738
$edges \rightarrow shoes$	w/o	80.279	2.674
	w/	74.359	2.804

SPADE semantic image synthesis

	Cityscapes			ADE20K		
Method	mIoU↑	accu†	FID↓	mIoU↑	accu↑	FID↓
CRN [5]	52.4	77.1	104.7	22.4	68.8	73.3
SIMS [49]	47.2	75.5	49.7	N/A	N/A	N/A
pix2pixHD [66]	58.3	81.4	95.0	20.3	69.2	81.8
SPADE [47]	62.3	81.9	71.8	38.5	79.9	33.9
SPADE + FFL	64.2	82.5	<u>59.5</u>	42.9	82.4	33.7

StyleGAN2 unconditional image synthesis

Dataset	FFL	FID↓	IS↑
CelebA-HQ	w/o	5.696	3.383
(256×256)	w/	4.972	3.432

Focal Frequency Loss for Image Reconstruction and Synthesis

GitHub (Code & Model)

Project Page

Thanks!

https://github.com/EndlessSora/ focal-frequency-loss

https://www.mmlabntu.com/project/ffl/index.html

P.S. 'pip install focal-frequency-loss' is all you need!