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SINGAPORE INTELLIGENCE

point-stop low-pass high-pass band-stop

Despite remarkable performance, gaps
between the real and fake still exist.
Some gaps are visible, while others may
only be revealed through the frequency
spectrum analysis.

Inherent bias of neural networks:
“spectral bias”, “F-Principle”, etc.
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Methodology: Step 1
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* Frequency Representation of Images

original point-stop low-pass high-pass band-stop
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Methodology: Step 2

* Frequency Distance

Definition:
F (u,v) = R (u,v) + I (u,v)i =a+ bi yA E ()
- Amplitude: S 7 | ‘\Uf\(ﬁ)ﬁ)
|F(u,v)|:\/R(u,v)2+l(u,v)2=\/m o I?I """"" ﬁ :Ff(u,v)
Phase: 4 o
ZF (u,v) = arctan (%) = arctan S 0 i alr a; x>
real amplitudeonly _ phaseonly _ amplitude + phase  For a single frequency,

d(ry,73) = |l = 3l3 = |F; (u,v) — Fy (u,v) |*

For the real and fake images,

M—-1N-1

2
_ . . d(F,, Ff) = MN >N IE (u,v) — Fy (u,0) |
Single-image reconstruction u=0 v=0




Methodology: Step 3 5 e SL02 OE

* Dynamic Spectrum Weighting

- Spectrum weight matrix (@ = 1 by default): - More intuitive illustration:

w (u7v) = |F‘7’ (u7v) — Ff (uvv) |a

- The full form of the focal frequency loss (FFL): i e
1 == H
FFL = + ZO ZO w (u, v) |Fy (u,v) — Fy (u,v) |,
} / / frequency
* Other variants of FFL for the flexibility: I
adjusting a, patch-based FFL, ... L) "
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Results and Analysis

* Image Reconstruction and Unconditional Synthesis (Autoencoders)

CelebA
reconstructlon synthe5|s
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real
real

w/o FFL

w/ FFL

w/o FFL

Vanilla AE reconstructlon on DTD and CelebA (64 x 64)

FECOHStrUCtIOH synthe5|s

real

w/ FFL

w/o FFL

VAE reconstruction and synthesis
on CelebA-HQ (256 x 256)

w/ FFL

VAE reconstructlon and synthesis on CelebA (64 X 64)
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e Analysis on Frequency Domain Gaps (VAE)

real

w/o FFL

w/ FFL

As an example, frequency domain gaps are narrowed by FFL for VAE image reconstruction on CelebA
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Results and Analysis

e Conditional Image Synthesis (pix2pix | SPADE)

CMP Facades edges — shoes Cityscapes ADE20K
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GAN-based image-to-image translation on various datasets (256 pix in short edge)
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* Potential on the State of the Art (StyleGAN2)

StyleGAN2 unconditional image synthesis on CelebA-HQ (256 x 256)
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* High-Resolution Examples (StyleGAN2)

Synthesized images by StyleGAN2 trained with FFL on CelebA-HQ (1024 x 1024)
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e Quantitative Evaluations

Vanilla AE image reconstruction pix2pix image-to-image translation
Dataset | FFL || PSNRT | SSIM?t | LPIPS||[ FID| | LFDJ] Dataset FFL FID] 1St
DTD w/o || 20.133 | 0.407 | 0.414 | 246.870] 14.764 CMP Facades | w/o 128.492 1.571
w/ 20.151 | 0.400 | 0.404 | 240.373| 14.760 w/ 123.773 1.738
CelebA | w/o 20.044 0.568 0.237 97.035 | 14.785 edges — shoes | w/o 80.279 2.674
w/ 21.703 | 0.642 | 0.199 | 83.801 | 14.403 w/ 74.359 2.804
VAE image reconstruction SPADE semantic image synthesis
Dataset | FFL PSNR1 | SSIMT | LPIPS|| FIDJ LFD] Cityscapes ADE20K
CelebA | w/o [[ 19.961 | 0.606 | 0217 | 69.900 | 14.804 Method mloUf[ accu? | FID] | mloUf accuf | FID{
w/ 22954 | 0.723 | 0.143 | 49.689 | 14.115 CRN [5] 524 | 77.1 | 1047 ] 224 | 688 | 73.3
CelebA- | w/o || 21.310 | 0.616 | 0.367 | 71.081 | 17.266 SIMS [49] 472 | 755 | 497 | N/A | N/A | N/A
HQ w/ 22253 | 0.637 | 0.344 | 59.470 | 17.049 pix2pixHD [66] || 583 | 814 | 950 | 203 | 692 | 81.8
SPADE [47] 623 | 819 | 71.8 | 385 | 799 | 33.9
" . . SPADE + FFL 642 | 825 | 59.5 | 429 | 824 7
VAE unconditional image synthesis i — 33
Dataset FFL FID| IS . i )
CelebA T wio 0116 1_8;3 StyleGAN2 unconditional image synthesis
w/ 71.050 2.010 Dataset FFL FID| ISt
CelebA- | w/o 93.778 2.057 CelebA-HQ | w/o 5.696 3.383
HQ w/ 84.472 2.060 (256 x 256) | w/ 4.972 3.432
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GitHub (Code & Model) Project Page

https://github.com/EndlessSora/ https://www.mmlab-
focal-frequency-loss ntu.com/project/ffl/index.html

P.S. pip install focal-frequency-loss ' is all you need!


https://github.com/EndlessSora/focal-frequency-loss
https://www.mmlab-ntu.com/project/ffl/index.html

