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Fig. 1. Our framework is simple and versatile for various image-to-image translation
tasks. For unsupervised arbitrary style transfer, diverse scenarios (e.g., natural images,
real-world scenes, artistic paintings) can be handled. For supervised semantic image
synthesis, our method is robust to different scenes (e.g., outdoor, street scene, indoor).
Multi-modal image synthesis is feasible by a single model with controllable styles.

Abstract. We introduce a simple and versatile framework for image-to-
image translation. We unearth the importance of normalization layers,
and provide a carefully designed two-stream generative model with newly
proposed feature transformations in a coarse-to-fine fashion. This allows
multi-scale semantic structure information and style representation to be
effectively captured and fused by the network, permitting our method to
scale to various tasks in both unsupervised and supervised settings. No
additional constraints (e.g., cycle consistency) are needed, contributing
to a very clean and simple method. Multi-modal image synthesis with
arbitrary style control is made possible. A systematic study compares
the proposed method with several state-of-the-art task-specific baselines,
verifying its effectiveness in both perceptual quality and quantitative
evaluations. GitHub: https://github.com/EndlessSora/TSIT.
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1 Introduction

Image-to-image translation [16] aims at translating one image representation to
another. Recent advances [10, 31, 22, 23, 33], especially Generative Adversarial
Networks (GANs) [10], have made remarkable success in various image-to-image
translation tasks. Previous studies usually present specialized solutions for a
specific form of application, ranging from arbitrary style transfer [54, 45, 13, 28,
14, 25, 50] in the unsupervised setting, to semantic image synthesis [16, 4, 35, 42,
34, 29] in the supervised setting.

In this study, we are interested in devising a general and unified framework
that is applicable to different image-to-image translation tasks without degrada-
tion in synthesis quality. This is non-trivial given the different natures of different
tasks. For instance, in certain conditional image synthesis tasks (e.g., arbitrary
style transfer), paired data are usually not available. Under this unsupervised
setting, translation task demands additional constraints on cycle consistency [54,
45, 20, 28], semantic features [40], pixel gradients [1], or pixel values [37]. In se-
mantic image synthesis (i.e., translation from segmentation labels to images),
training pairs are available. This task is more data-dependent and typically needs
losses to minimize per-pixel distance between the generated sample and ground
truth. In addition, specialized structures [4, 42, 34, 29] are required to maintain
spatial coherence and resolution. Due to the different needs, existing methods
exploit their own specially designed components. It is difficult to cross-use these
components or integrate them into a unified framework.

To address the aforementioned challenges, we propose a Two-Stream Image-
to-image Translation (TSIT) framework, which is versatile for various image-to-
image translation tasks (see Fig. 1). The framework is simple as it is based purely
on feature transformation. Unlike previous approaches [34, 13] that only consider
either semantic structure or style representation, we factorize both the structure
and style in multi-scale feature levels via a symmetrical two-stream network.
The two streams jointly influence the new image generation in a coarse-to-fine
manner via a consistent feature transformation scheme. Specifically, the content
spatial structure is preserved by an element-wise feature adaptive denormaliza-
tion (FADE) from the content stream, while the style information is exerted by
feature adaptive instance normalization (FAdaIN) from the style stream. Stan-
dard loss functions such as adversarial loss and perceptual loss are used, without
additional constraints like cycle consistency. The pipeline is applicable to both
unsupervised and supervised settings, easing the preparation of data.

The contributions of our work are summarized as follows. We propose
TSIT, a simple and versatile framework, which is effective for various image-
to-image translation tasks. Despite the succinct design, our network is readily
adaptable to various tasks and achieves compelling results. The good perfor-
mance is achieved by 1) multi-scale feature normalization (FADE and FAdaIN)
scheme that captures coarse-to-fine structure and style information, and 2) a
two-stream network design that integrates both content and style effectively, re-
ducing artifacts and making multi-modal image synthesis possible (see Fig. 1). In
comparison to several state-of-the-art task-specific baselines [14, 50, 4, 35, 42, 34,
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29], our method achieves comparable or even better results in both perceptual
quality and quantitative evaluations.

2 Related Work

Image-to-image translation. Existing methods can be classified into two
categories: unsupervised and supervised. With only unpaired data, unsuper-
vised image-to-image translation problem is inherently ill-posed. Additional con-
straints are needed on e.g., cycle consistency [54, 45, 20, 28], semantic features
[40], pixel gradients [1], or pixel values [37]. In contrast, supervised methods, such
as pix2pix [16], are more data-dependent, requiring well-annotated paired train-
ing samples. Subsequent approaches [4, 35, 42, 34, 29] extend the supervised prob-
lem for generating high-resolution images or keeping effective semantic meaning.

Limited by learning only one-to-one mapping between two domains, some of
the GAN-based methods [54, 45, 20, 28] suffer from generating images with low
diversity. Recent studies explore more deeply into both multi-domain transla-
tion [6, 27] and multi-modal translation [14, 25, 49], significantly increasing gen-
eration diversity. MUNIT [14] is a representative method that disentangles the
domain-invariant content and the domain-specific style representation, enrich-
ing the synthesized images. Multi-mapping translation is defined in a very recent
work, DMIT [50], which is designed to capture the multi-modal image nature in
each domain.

Existing image-to-image translation methods lack the scalability to adapt to
different tasks under diverse difficult settings. Different demands of unsupervised
and supervised settings oblige previous methods to exploit customized modules.
Cross-using these components will be suboptimal due to either degradation in
quality or introduction of additional constraints. It is non-trivial to integrate
them into a single framework and improve robustness. In this study, we design
a two-stream network with newly proposed feature transformations inspired by
[34] and [13]. Our method is succinct yet able to link various tasks.

Arbitrary style transfer. Style transfer is closely relevant to image-to-image
translation in the unsupervised setting. Style transfer aims at retaining the con-
tent structure of an image, while manipulating its style representation adopted
from other images. Classical methods [9, 18, 3, 8] gradually improve this task
from optimization-based to real-time, allowing multiple style transfer during in-
ference. Huang et al. introduce AdaIN [13], an effective normalization strategy
for arbitrary style transfer. Several studies [46, 52, 44, 5, 24, 30, 39] improve styl-
ization via wavelet transforms [46], graph cuts [52], or iterative error-correction
[39]. Besides, most collection-guided [14] style transfer methods are GAN-based
[54, 45, 28, 14, 25, 50], showing impressive results.

Previous works usually consider either content or style information. In con-
trast, our framework succeeds in seeking a balance between content and style,
and adaptively fuses them well. The proposed method achieves user-controllable
multi-modal style manipulation by only a single model. Compared to customized
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style transfer methods, our approach achieves better synthesis quality in many
scenarios including natural images, real-world scenes, and artistic paintings.

Semantic image synthesis. We define semantic image synthesis as in [34], aim-
ing at synthesizing a photorealistic image from a semantic segmentation mask.
Semantic image synthesis is a special form of supervised image-to-image transla-
tion. The domain gap of this task is large. Therefore, keeping effective semantic
information to enhance fidelity without losing diversity is challenging.

Pix2pix [16] first adopts conditional GAN [31] in the semantic image syn-
thesis task. Pix2pixHD [42] contains a multi-scale generator and multi-scale dis-
criminators to generate high-resolution images. SPADE [34] takes a noise map
as input, and resizes the semantic label map for modulating the activations in
normalization layers by a learned affine transformation. CC-FPSE [29] employs
a weight prediction network for generator. A semantics-embedding discriminator
is used to enhance fine details and semantic alignments between the generated
samples and the input semantic layouts. In addition to these GAN-based meth-
ods, CRN [4] applies a cascaded refinement network with regression loss as the
supervision. SIMS [35] is a semi-parametric method, retrieving fragments from
a memory bank and refining the canvas by a refinement network.

Different from prior works, we design a symmetrical two-stream framework.
The network learns feature-level semantic structure information and style repre-
sentation instead of directly resizing the input mask like SPADE [34]. Coarse-to-
fine feature representations are learned by neural networks, adaptively keeping
high fidelity without diminishing diversity.

3 Methodology

We consider three key requirements in formulating a robust and scalable method
to link various tasks: 1) Both semantic structure information and style repre-
sentation should be considered and fused adaptively. 2) The content and style
information should be learned by networks in feature level instead of in image
level to fit the nature of diverse semantic tasks. 3) The network structure and
loss functions should be simple for easy training without additional constraints.

Based on the aforementioned considerations, we design a Two-Stream Image-
to-image Translation (TSIT) framework (see Fig. 2). We will detail our method
in this section, including the network structure (Sec. 3.1), the feature transfor-
mation scheme (Sec. 3.2), and the objective functions (Sec. 3.3).

3.1 Network Structure

As illustrated in Fig. 2, TSIT consists of four components: content stream, style
stream, generator, and discriminators (omitted in Fig. 2). The first three main
components are fully convolutional and symmetrically designed. The details of
the submodules, including content/style residual block, FADE residual block,
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Fig. 2. The proposed Two-Stream Image-to-image Translation (TSIT) framework. The
multi-scale patch-based discriminators are omitted. A Gaussian noise map is taken as
the latent input for the generator. The feature representations of the content and style
images are extracted by the corresponding streams for multi-scale feature transforma-
tions. The symmetrical networks fuses semantic structure and style representation in
an end-to-end training. Submodules of our network are shown in Fig. 3.

FADE module in the FADE residual block, are as shown in Fig. 3. We will
discuss them separately in this section.

Content/style stream. Unlike the traditional conditional GAN [31], we place
the two-stream networks, i.e., content stream and style stream, on each side of
the generator (see Fig. 2). These two streams are symmetrical with the same
network structure, aiming at extracting corresponding feature representations
in different levels. We construct content/style stream based on standard resid-
ual blocks [11]. We call them content/style residual blocks. As shown in Fig 3
(a), each block has three convolutional layers, one of which is designed for the
learned skip connection. The activation function is Leaky ReLU. The function of
content/style stream is to extract features and feed them to the corresponding
feature transformation layers in the generator. Multi-scale content/style repre-
sentation in feature levels can be learned by content/style stream, adaptively
fitting different feature transformations.

Generator. The generator has a completely inverse structure w.r.t. the con-
tent/style stream. This is intentionally designed to consistently match the level
of semantic abstraction at different feature scales. A noise map is sampled from a
Gaussian distribution as the latent input, and the feature maps from correspond-
ing layers in content/style stream are taken as multi-scale feature inputs. The
proposed feature transformations are implemented by a FADE residual block
(Fig. 3 (b)) and a FAdaIN module. In the FADE residual block, we use an in-
verse architecture w.r.t. the content/style residual block and replace the batch
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Fig. 3. Submodules of our framework. (a) is a content/style residual block in the sym-
metrical content/style streams. (b) is a FADE residual block in the generator. (c) is a
FADE module in the FADE residual block. It performs element-wise denormalization
by modulating the normalized activation using a learned affine transformation defined
by the modulation parameters γ and β.

normalization [15] layer with the FADE module (Fig. 3 (c)). The FADE module
performs element-wise denormalization by modulating the normalized activation
using a learned affine transformation defined by the modulation parameters γ
and β. The FAdaIN module is used to exert style information through feature
adaptive instance normalization. More discussions are given in Sec. 3.2.

The entire image generation process is performed in a coarse-to-fine man-
ner. In particular, multi-scale content/style features are injected to refine the
generated image constantly from high-level latent code to low-level image repre-
sentation. Semantic structure and style information are learnable and effectively
fused in an end-to-end training.

Discriminators. We exploit the standard multi-scale patch-based discrimina-
tors (omitted in Fig. 2) in [42, 34]. Three regular discriminators with an identical
architecture are included to discriminate images at different scales. Despite the
same structure, patch-based training allows the discriminator operating at the
coarsest scale to have the largest receptive field, capturing global information of
the image. Whereas the one operating at the finest scale has the smallest recep-
tive field, making the generator produce better details. Multi-scale patch-based
discriminators further improve the robustness of our method for image-to-image
translation tasks in different resolutions. Besides, the discriminators also serve
as feature extractors for the generator to optimize the feature matching loss.

3.2 Feature Transformation

We propose a new feature transformation scheme, considering both semantic
structure information and style representation, and fusing them adaptively. Let
xc be the content image and xs be the style image. CS, SS, G, D denote content
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stream, style stream, generator, and discriminators, respectively. Sampled from a
Gaussian distribution, z0 ∈ Z is a noise map as the latent input for the generator
(Fig. 2). Let zi ∈ {z0, z1, z2, ..., zk} be the feature map after i-th residual block
in the generator, with k denoting the the total number of residual blocks (i.e.,
the upsampling times in the generator). Let f ci ∈ {f c0 , f c1 , f c2 , ..., f ck} represent
the corresponding feature representations extracted by the content stream (Fig.
2), fsi ∈ {fs0 , fs1 , fs2 , ..., fsk} with the similar meaning in the style stream.

Feature adaptive denormalization (FADE). Our method is inspired by
spatially adaptive denormalization (SPADE) [34]. Different from SPADE that
resizes a semantic mask as its input, we generalize the input to multi-scale feature
representation f ci of the content image xc. In this way, we fully exploit semantic
information captured by the content stream CS.

Formally, we define N as the batch size, Li as the number of feature map
channels in each layer. Hi and Wi are height and width, respectively. We first
apply batch normalization [15] to normalize the generator feature map zi in a
channel-wise manner. Then, we modulate the normalized feature by using the
learned parameters scale γi and bias βi. The denormalized activation (n ∈ N ,
l ∈ Li, h ∈ Hi, w ∈Wi) is:

γl,h,wi · z
n,l,h,w
i − µl

i

σl
i

+ βl,h,w
i , (1)

where µl
i and σl

i are the mean and standard deviation, respectively, of the gen-
erator feature map zi before the batch normalization [15] in channel l:

µl
i =

1

NHiWi

∑
n,h,w

zn,l,h,wi , (2)

σl
i =

√
1

NHiWi

∑
n,h,w

(
zn,l,h,wi

)2
−
(
µl
i

)2
. (3)

The denormalization operation is element-wise, and the parameters γl,h,wi

and βl,h,w
i are learned by one-layer convolutions from f ci in the FADE module

(see Fig. 3 (c)). Compared to previous conditional normalization methods [8,
13, 34], FADE experiences more perceptible influence from coarse-to-fine feature
representations, thus it can better preserve semantic structure information.

Feature adaptive instance normalization (FAdaIN). To better fuse style
representation, we introduce another feature transformation, named feature adap-
tive instance normalization (FAdaIN). This method is inspired by adaptive in-
stance normalization (AdaIN) [13], with a generalization to enable the style
stream SS to learn multi-scale feature-level style representation fsi of the style
image xs more effectively.

We use the same notation zi to represent the feature map after i-th FADE
residual block in the generator. FAdaIN adaptively computes the affine param-
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eters from the corresponding style feature fsi with the same scale from SS:

FAdaIN (zi, f
s
i ) = σ (fsi )

(
zi − µ (zi)

σ (zi)

)
+ µ (fsi ) , (4)

where µ (zi) and σ (zi) are the mean and standard deviation, respectively, of zi.
Exploiting FAdaIN, coarse-to-fine style features at different layers can be

fused adaptively with the corresponding semantic structure features learned by
FADE, allowing our framework to be trained end-to-end and versatile to different
tasks. Furthermore, owing to the effectiveness of FAdaIN in capturing multi-scale
style feature representations, multi-modal image synthesis is made possible with
arbitrary style control.

3.3 Objective

We use standard losses in our objective function. Following [34, 29], we adopt a
hinge loss term [26, 32, 51] as our adversarial loss. For the generator, we apply
hinge-based adversarial loss, perceptual loss [18], and feature matching loss [42].
For the multi-scale discriminators, only hinge-based adversarial loss is used to
distinguish whether the image is real or fake. The generator and discriminator
are trained alternately to play a min-max game. The generator loss LG and the
discriminator loss LD can be written as:

LG = −E [D (g)] + λPLP (g, xc) + λFMLFM (g, xs) , (5)

LD = −E [min (−1 +D (xs) , 0)]− E [min (−1−D (g) , 0)] , (6)

where g = G (z0, x
c, xs) denotes the generated image, z0, xc, xs denote the input

noise map in latent space, the content image, and the style image, respectively.
LP is the perceptual loss [18] that minimizes the difference between the feature
representations extracted by VGG-19 [18] network. LFM is the feature matching
loss [42] that matches the intermediate features at different layers of multi-scale
discriminators. λP and λFM are the corresponding weights.

The simple objective functions make our framework stable and easy to train.
Thanks to the two-stream network, the typical KL loss [22, 50, 34, 29] for multi-
modal image synthesis becomes optional. Despite the simplicity, TSIT is a highly
versatile tool, readily adaptable to various image-to-image translation tasks.

4 Experiments

4.1 Settings

Implementation details. We use Adam [21] optimizer and set β1 = 0, β2 =
0.9. Two time-scale update rule [12] is applied, where the learning rates for
the generator (including two streams) and the discriminators are 0.0001 and
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0.0004, respectively. We exploit Spectral Norm [32] for all layers in our network.
We adopt SyncBN and IN [41] for the generator and the multi-scale discrim-
inators, respectively. For the perceptual loss [18], we use the feature maps of
relu1 1, relu2 1, relu3 1, relu4 1, relu5 1 layers from a pretrained VGG-19
[38] model, with the weights [1/32, 1/16, 1/8, 1/4, 1]. For the feature matching
loss [42], we select features of three layers from the discriminator at each scale.
All the experiments are conducted on NVIDIA Tesla V100 GPUs. Please refer
to our Appendix for additional implementation details.

Applications. The proposed framework is versatile for various image-to-image
translation tasks. We consider three representative applications of conditional
image synthesis: arbitrary style transfer (unsupervised), semantic image synthe-
sis (supervised), and multi-modal image synthesis (enriching generation diver-
sity). Please refer to our Appendix for details of our application exploration.

Datasets. For arbitrary style transfer, we consider diverse scenarios. We use
Yosemite summer → winter dataset (natural images) provided by [54]. We clas-
sify BDD100K [48] (real-world scenes) into different times and perform day →
night translation. Besides, we use Photo → art dataset (artistic paintings) in
[54]. For semantic image synthesis, we select several challenging datasets (i.e.,
Cityscapes [7] and ADE20K [53]). For multi-modal image synthesis, we further
classify BDD100K [48] into different time and weather conditions, and perform
controllable time and weather translation. The details of the datasets can be
found in the Appendix.

Evaluation metrics. Besides comparing perceptual quality, we employ the
standard evaluation protocol in prior works [14, 2, 19, 34, 29] for quantitative
evaluation. For arbitrary style transfer, we apply Fréchet Inception Distance
(FID, evaluating similarity of distribution between the generated images and
the real images, lower is better) [12] and Inception Score (IS, considering clar-
ity and diversity, higher is better) [36]. For semantic image synthesis, we strictly
follow [34, 29], adopting FID [12] and segmentation accuracy (mean Intersection-
over-Union (mIoU) and pixel accuracy (accu)). The segmentation models are:
DRN-D-105 [47] for Cityscapes [7], and UperNet101 [43] for ADE20K [53].

Baselines. We compare our method with several state-of-the-art task-specific
baselines. For a fair comparison, we mainly employ GAN-based methods. In the
unsupervised setting, MUNIT [14] and DMIT [50] are included, with the strong
ability to capture the multi-modal nature of images while keeping quality. In
the supervised setting, we compare against CRN [4], SIMS [35], pix2pixHD [42],
SPADE [34], and CC-FPSE [29].

4.2 Results

Arbitrary style transfer. The results of Yosemite summer → winter season
transfer are shown in Fig. 4. Baselines [14, 50] tend to impose the color of the
style image (winter) to the whole content image (summer). Besides, MUNIT
sometimes introduces unnecessary artistic effects, and DMIT generates some
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Summer Winter MUNIT DMIT Ours

Fig. 4. Yosemite summer → winter season transfer results compared to baselines.

Day Night MUNIT DMIT Ours

Fig. 5. BDD100K day → night time translation results compared to baselines.

grid-like artifacts. In comparison, our generated results are clearer and more
semantics-aware spatially. The results of BDD100K day → night time transla-
tion are shown in Fig. 5. Some objects (e.g., road sign, car) generated by MUNIT
are too dark, and the whole image tends to have some unnatural colors. DMIT
introduces obvious artifacts to the car or sky. In contrast, our method produces
more photorealistic samples in this task. In photo→ art style transfer, we choose
some hard cases to make a clear comparison (see Fig. 6) due to the very strong
ability of all the methods in this task. Our method can transfer the styles well
while effectively keeping the content structure. MUNIT tends to impose a homo-
geneous color to the image. Although DMIT achieves slightly better stylization
than our method in certain cases (in Row 3 of Fig. 6), it also brings some grid-like
distortions.

The quantitative evaluation results are shown in Table 1. Our approach
achieves better performance than baselines [14, 50] in all the tasks. We also note
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Photo Art MUNIT DMIT Ours

Fig. 6. Photo → art style transfer results compared to baselines.

Table 1. The FID and IS scores of our method compared to state-of-the-art methods in
arbitrary style transfer tasks. A lower FID and a higher IS indicate better performance.

summer → winter day → night photo → art
Methods FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
MUNIT [14] 118.225 2.537 110.011 2.185 167.314 3.961
DMIT [50] 87.969 2.884 83.898 2.156 166.933 3.871
Ours 80.138 2.996 79.697 2.203 165.561 4.020

that the gap is relatively small in photo → art style transfer, in line with the
close qualitative performance in this task (see Fig. 6).

Semantic image synthesis. We choose two state-of-the-art baselines, SPADE
[34] and CC-FPSE [29], to show some qualitative comparison results of semantic
image synthesis (Fig. 7). Our method demonstrates better perceptual quality
than these task-specific baselines. In street scene (Column 1), our method gen-
erates better details on key objects (car, pedestrian). In road scene (Column
2), SPADE generates atypical colors on the roads, while CC-FPSE produces
unnatural edges on the cars, hardly fitting the background (road). For outdoor
natural images (Column 3), all the methods share a similar generation quality.
Our method is slightly better due to less distortions on the grass. In indoor scene
(Column 4 and 5), SPADE and CC-FPSE produce obvious artifacts in some cases
(Column 5). In contrast, our method is more robust to diverse scenarios.

The quantitative evaluation results are shown in Table 2 (the values used for
comparison are taken from [34, 29]). The proposed method achieves comparable
performance with the very strong specialized methods [4, 35, 42, 34, 29] for se-
mantic image synthesis. Note that SIMS [35] yields the best FID score but poor
segmentation performance on Cityscapes, because it stitches image patches from
a memory bank of training set while not keeping the exactly consistent position
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Fig. 7. Semantic image synthesis results compared to baselines.

Table 2. The mIoU, pixel accuracy (accu) and FID scores of our method compared to
state-of-the-art methods in semantic image synthesis tasks. A higher mIoU, a higher
pixel accuracy (accu) and a lower FID indicate better performance.

Cityscapes ADE20K
Methods mIoU ↑ accu ↑ FID ↓ mIoU ↑ accu ↑ FID ↓
CRN [4] 52.4 77.1 104.7 22.4 68.8 73.3
SIMS [35] 47.2 75.5 49.7 N/A N/A N/A
pix2pixHD [42] 58.3 81.4 95.0 20.3 69.2 81.8
SPADE [34] 62.3 81.9 71.8 38.5 79.9 33.9
CC-FPSE [29] 65.5 82.3 54.3 43.7 82.9 31.7
Ours 65.9 82.7∗ 59.2 38.6 80.8 31.6

in the synthesized image. Our approach achieves state-of-the-art segmentation
performance on Cityscapes and the best FID score on ADE20K, suggesting its
robustness to fit the nature of different image-to-image translation tasks.

∗ The value differs from the earlier version of this paper [17]. The official code of
DRN [47] does not provide the implementation of the “accu” metric. The new accu
value 82.7% (still the best among the compared methods) is obtained by including
255-labeled pixels, consistent with [34, 29]. The previously reported accu 94.4% omits
255-labeled pixels, which may be more reasonable due to its consistency with the
training of the segmentation model and the calculation of mIoU.
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Fig. 8. BDD100K multi-modal image synthesis results for different time and
weather translation by a single model.

MUNIT Ours

Cross Validation (Semantic Image Synthesis, Supervised)

Mask Ground Truth

Cross Validation (Arbitrary Style Transfer, Unsupervised)

Day Night SPADE Ours

Fig. 9. Cross validation of ineffectiveness of task-specific methods in inverse settings.

Multi-modal image synthesis. We perform multi-modal image synthesis for
time and weather image-to-image translation (see Fig. 8) on BDD100K [48].
Training only a single model, we translate the images of weather sunny to differ-
ent times and weathers (i.e., night, snowy, cloudy, rainy). Our method effectively
adapts to different style control and keeps photorealistic generation quality. Al-
though the weather snowy is not very obvious in BDD100K [48], our approach
successfully introduces some snow-like effects on trees and grounds (Column 2).

Cross validation. We also conduct experiments to evaluate the performance of
existing specialized methods in inverse settings (i.e., using unsupervised methods
to do semantic image synthesis / using supervised methods to perform arbitrary
style transfer). We selected two representative methods, MUNIT [14] and SPADE
[34]. Without modifying the architecture, we tuned the loss weights and tried
to get the best generation results. To ensure a fair comparison, we also tried to
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Fig. 10. Ablation studies of key modules (i.e., content stream (CS), style
stream(SS)) and feature transformations in multi-modal image synthesis task.

compute perceptual loss with the content (day) image for SPADE to match the
setting of TSIT. Representative results of cross validation are shown in Fig. 9.
The proposed method shows much better results than baseline methods. MUNIT
fails to adapt to semantic image synthesis. SPADE loses details of key objects
and introduces very strong artifacts despite translating the color correctly.

Ablation studies. We present ablation studies of key modules (i.e., content
stream (CS), style stream(SS)) and the proposed feature transformations (see
Fig. 10. More ablation study results can be found in the Appendix ). We perform
multi-modal image synthesis to show the effectiveness of different components.
Our full model generates high-quality results (Row 3). When we directly inject
the resized content image without CS, the semantic structure information be-
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comes weak, leading to several artifacts in the sky (Row 4). Without SS, the
model cannot perform multi-modal image synthesis at all (Row 5). The style
representation is dominated by the night style. When we concatenate the fea-
ture maps of CS with the ones of the generator instead of using FADE, the
concatenation introduces too much content information, leading to several fail-
ure cases (e.g., sunny→ night in Row 6). If we discard FAdaIN by concatenating
the feature maps of SS with the ones of the generator, the style becomes too
strong, causing serious style regionalization problem (Row 7).

5 Conclusion

We propose TSIT, a simple and versatile framework for image-to-image transla-
tion. The proposed symmetrical two-stream network allows the image generation
to be effectively conditioned on the multi-scale feature-level semantic structure
information and style representation via feature transformations. A systematic
study verifies the effectiveness of our method in diverse tasks compared to state-
of-the-art task-specific baselines. We believe that designing a unified and versa-
tile framework for more tasks is an important direction in the image generation
area. Incorporating unconditional image synthesis tasks and introducing more
variability into the two streams/latent space can be interesting future works.

Acknowledgements. This work is supported by the SenseTime-NTU Collabo-
ration Project, Singapore MOE AcRF Tier 1 (2018-T1-002-056), and NTU NAP.
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Appendix

This appendix provides the supplementary information that is not elaborated in
the main paper: Sec. A details the different applications we have explored. Sec. B
describes details of the datasets used in our experiments. Sec. C provides ad-
ditional implementation details. Sec. D presents several supplementary ablation
studies. Sec. E shows more examples of the images generated by our method.

A Application Exploration

We have introduced a Two-Stream Image-to-image Translation (TSIT) frame-
work in the main paper. The proposed framework is simple and versatile for var-
ious image-to-image translation tasks under both unsupervised and supervised
settings. We have considered three important and representative applications
of conditional image synthesis: arbitrary style transfer (unsupervised), semantic
image synthesis (supervised), and multi-modal image synthesis (enriching gen-
eration diversity). We employ a two-stream network, namely “content” stream
and “style” stream, on these applications.

For the unsupervised arbitrary style transfer application, we feed the content
image to the content stream and the style image to the style stream, and let
the networks learn different levels of feature representations of the content and
style. The proposed feature transformations, FADE and FAdaIN, adaptively fuse
content and style feature maps, respectively, at different scales in the generator.
In contrast to prior works, our method is more adaptable to style transfer tasks in
diverse scenarios (e.g., natural images, real-world scenes, and artistic paintings).

We further expand the application of our method to cater to semantic image
synthesis under the supervised setting. The definition of “content” and “style”
can be more general: all the images that provide semantic structure information
can be content images, and all the images representing the global style distri-
bution can be considered as style images. Therefore, when we inject semantic
segmentation masks to the content stream and the corresponding real images to
the style stream, semantic image synthesis task in the supervised setting can be
handled. Despite a rather large domain gap in this task, our framework yields
comparable or even better results over the state-of-the-art task-specific methods,
suggesting the high adaptability of our approach.

It is noteworthy to highlight that the newly proposed feature transformations
and the symmetrical two-stream network can effectively disentangle the seman-
tic structure and style information. Thanks to the clean disentanglement, the
high-level multi-modal nature of the images can be captured by our framework,
contributing to high-fidelity multi-modal image synthesis.

B Dataset Details

In this section, we discuss the detailed information of all the datasets we explored,
including the source, preprocessing, number of images, resolution, etc.
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For arbitrary style transfer under the unsupervised setting, paired data are
not needed. We perform style transfer tasks in diverse scenarios (e.g., natural
images, real-world scenes, and artistic paintings).

– Yosemite summer → winter. We use this unpaired dataset provided by
[54], containing rich natural images collected via Flickr API. We perform
season transfer using this dataset, with 1, 231 summer images and 962 winter
images for training. The resolution is 256× 256.

– BDD100K day → night. We conduct time translation on BDD100K [48]
dataset, which is captured at diverse locations in the United States. All the
images are in real-world scenes, mostly street/road scenes. We classify the
dataset into different times. The training set contains 12, 454 daytime images
and 22, 884 nighttime images. The original images are scaled to 512× 256.

– Photo → art. We utilize the art dataset collected in [54]. The art images
of this dataset were downloaded from Wikiart.org. The dataset consists of
photographs and diverse artistic paintings (Monet: 1, 074; Cézanne: 584; van
Gogh: 401; Ukiyo-e: 1, 433). To test the robustness of the models for arbitrary
style transfer, we combine all the artistic styles, yielding 6, 853 photos and
3, 492 paintings for training. All the images are uniformly resized to 256×256.

For semantic image synthesis under the supervised setting, we follow [29, 34]
and select several challenging datasets.

– Cityscapes. Cityscapes [7] dataset contains street scene images mostly col-
lected in Germany, with 2, 975 images for training and 500 images for eval-
uation. The dataset provides instance-wise, dense pixel annotations of 30
classes. All the image sizes are adjusted to 512× 256.

– ADE20K. We use ADE20K [53] dataset consisting of challenging in-the-
wild images with fine annotations of 150 semantic classes. The sizes of train-
ing and validation sets are 20, 210 and 2, 000, respectively. All the images
are scaled to 256× 256.

For multi-modal image synthesis, we use BDD100K [48] dataset, details of
which have been described earlier.

– BDD100K sunny → different time/weather conditions. We further
classify the images in BDD100K [48] dataset into different time and weather
conditions, constituting a training set of 10, 000 sunny images and 10, 000
images of other time and weather conditions (night: 2, 500; cloudy: 2, 500;
rainy: 2, 500; snowy: 2, 500). The resolution is 512× 256.

C Additional Implementation Details

We provide more implementation details in this section, including the network
architecture specifics, detailed feature shapes, hyperparameters, etc.

Network architecture specifics. Our framework consists of four components:
content stream, style stream, generator, and discriminators. The first three com-
ponents maintain a symmetrical structure, using fully convolutional networks.
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The number of residual blocks k (i.e., downsampling/upsampling times) in the
content/style stream and the generator equals to 7. Let inc, outc, kn, s, p de-
note the input channel, the output channel, the kernel size, the stride, and the
zero-padding amount, respectively.

In the content/style stream, we use a series of content/style residual blocks
with the nearest neighbor downsampling. The scale factor of downsampling is
2. By default, we use instance normalization [41] for the content/style resid-
ual blocks, and the negative slope of Leaky ReLU is 0.2. Thus, the struc-
ture of Content/Style ResBlk(inc, outc) is: Downsample(2)−Conv(inc, inc, kn3×
3, s1, p1)−IN− LReLU(0.2)−Conv(inc, outc, kn3 × 3, s1, p1)−IN− LReLU(0.2)
with the learned skip connection Conv(inc, outc, kn1×1, s1, p0)−IN− LReLU(0.2).

In the generator, we construct several FADE residual blocks with the near-
est neighbor upsampling. The scale factor of upsampling is 2. FAdaIN layers
are applied before each FADE residual block. The FADE residual block con-
tains a FADE submodule, which performs element-wise denormalization using a
learned affine transformation defined by the modulation parameters γ and β. Let
normc, featc indicate the normalized channel and the injected feature channel,
respectively. Then, the convolutional layers in FADE(normc, featc) can be rep-
resented as: Conv(featc, normc, kn3 × 3, s1, p1). By default, we adopt SyncBN
for the generator, and the negative slope of Leaky ReLU is 0.2. The structure of
FADE ResBlk(inc, outc) is: FADE(inc, inc)−LReLU(0.2)−Conv(inc, inc, kn3×
3, s1, p1)−FADE(inc, inc)−LReLU(0.2)−Conv(inc, outc, kn3× 3, s1, p1)−Upsa-
mple(2) with the learned skip connection FADE(inc, inc)−LReLU(0.2)−Conv(inc,
outc, kn1× 1, s1, p0).

As mentioned in the main paper, we exploit the same multi-scale patch-based
discriminators as [42, 34]. The detailed network architectures and the layers used
for feature matching loss [42] are also identical.

Feature shapes. In the content/style stream, we put an input layer at the
entrance. The feature channel is adjusted to 64 after the input layer, while the
resolution remains unchanged. Then, the feature channels after each of the k(7)
residual blocks are: 128, 256, 512, 1024, 1024, 1024, 1024. Since the scale factor
of downsampling is 2 (as described in the network architecture specifics above),
the resolution of the features is halved after each residual block. The generator
feature shapes are strictly corresponding and opposite to that of content/style
stream. The discriminator feature shapes are identical to that in [42, 34], where
the resolution is halved on every step of the pyramid.

Additional training details. For perceptual loss, we use the feature recon-
struction loss that requires a content target [18].

In the arbitrary style transfer and multi-modal image synthesis tasks, the
content target is the content image. The loss weights are λP = 1, λFM = 1, and
the batch size is 1. We train our models for 200 epochs on Yosemite summer
→ winter, 10 epochs on BDD100K day → night, 40 epochs on Photo → art,
and 20 epochs on BDD100K sunny → different time/weather conditions. The
models are trained on 1 NVIDIA Tesla V100 GPU, with around 10 GB memory
consumption. For multi-modal image synthesis, similar to [16], at the inference
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Table 3. The quantitative evaluation on ablation studies of the key modules (i.e.,
content stream (CS), style stream (SS)) and the feature transformations in multi-modal
image synthesis task. A lower FID and a higher IS indicate better performance.

multi-modal image synthesis
Metrics full model w/o CS w/o SS w/o FADE w/o FAdaIN

FID ↓ 85.876 89.429 86.263 86.463 89.795
IS ↑ 2.934 2.851 2.734 2.881 2.890

phase we run the generator network in exactly the same manner as during the
training phase. For the cross validation of SPADE [34], the hyperparameters
obtaining the best generation results are λP = 10, λFM = 10.

In the semantic image synthesis task, the content target is the ground truth
real image. The corresponding loss weights are λP = 20, λFM = 10, and the
batch size is 16. We perform 200 epochs of training on Cityscapes and ADE20K.
The models are trained on 2 NVIDIA Tesla V100 GPUs, each with about 32 GB
memory consumption. We also find that in semantic image synthesis, weaken-
ing/removing the style stream can sometimes contribute to a performance boost.
Besides, exploiting variational auto-encoders [22] can help in certain cases. For
the cross validation of MUNIT [14], since the loss functions are very different
from ours, we use its default hyperparameters in unsupervised image-to-image
translation.

D Supplementary Ablation Studies

We ablate the key modules (i.e., content stream (CS), style stream(SS)) and the
proposed feature transformations in the main paper. We perform multi-modal
image synthesis to clearly show the effectiveness of different components. Due
to the space constraints, we only provide qualitative evaluation results. In this
section, we will first show the quantitative evaluation results of key component
ablation studies in the main paper. Then, we will dig deeper and present more
supplementary ablation study results.

Quantitative evaluation of key component ablation studies. We conduct
quantitative evaluation on ablation studies of the key components in multi-modal
image synthesis task. As shown in Table 3, using the full model we introduced,
the lowest FID score and highest IS score have been achieved. This means the
generated images by our full model are the most photorealistic, clearest, and
of the highest diversity. Without any key module of TSIT, the quantitative
performance will drop. This verifies the necessity of these components for our
method.

Feature channel ablation studies. We also study how the number of fea-
ture channels in the two streams (i.e., content stream (CS) and style stream
(SS)) affects the image synthesis results. We conduct quantitative evaluation of
feature channel ablation studies, covering all of the discussed tasks. Note that
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Table 4. The quantitative evaluation on ablation studies of CS/SS feature channels
for unsupervised arbitrary style transfer (day → night). A lower FID and a higher IS
indicate better performance.

arbitrary style transfer (day → night)
Metrics full model channels÷ 2 channels÷ 4

FID ↓ 79.697 82.357 95.199
IS ↑ 2.203 2.142 2.101

Table 5. The quantitative evaluation on ablation studies of CS/SS feature channels
for supervised semantic image synthesis (Cityscapes). A higher mIoU, a higher pixel
accuracy (accu) and a lower FID indicate better performance.

semantic image synthesis (Cityscapes)
Metrics full model channels÷ 2 channels÷ 4

mIoU ↑ 65.9 61.0 56.6
accu ↑ 82.7 82.1 81.5
FID ↓ 59.2 71.8 74.4

Table 6. The quantitative evaluation on ablation studies of CS/SS feature channels for
multi-modal image synthesis. A lower FID and a higher IS indicate better performance.

multi-modal image synthesis
Metrics full model channels÷ 2 channels÷ 4

FID ↓ 85.876 93.258 97.297
IS ↑ 2.934 2.851 2.813

we should change the channels in CS/SS at the same time to maintain a sym-
metrical structure. As presented in Table 4, Table 5 and Table 6, in different
tasks under either unsupervised or supervised setting, the best performance is
achieved by the full model of TSIT. As we reduce the channel numbers in the
two-stream network, the image synthesis quality gradually degrade. For more
channels, memory consumption will increase exponentially.

Feature-level/Image-level injection ablation studies. To verify the impor-
tance of the feature-level injection, We further conduct feature-level/image-level
injection ablation studies. TSIT performs feature-level injections from the con-
tent/style stream to the generator to adapt to diverse tasks. In comparison, the
direct injection of resized images (i.e., the direct application of AdaIN in arbi-
trary style transfer, and SPADE in semantic image synthesis) can be regarded as
the image-level injections. We provide quantitative evaluation results under this
setting. As shown in Table 7 and Table 8, compared to our feature-level injection
scheme, the image-level injection leads to a performance drop. This suggests the
significance of feature-level injection in TSIT.
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Table 7. The quantitative evaluation on ablation studies of feature-level (FAdaIN)/
image-level (AdaIN) injection for unsupervised arbitrary style transfer (day → night).
A lower FID and a higher IS indicate better performance.

arbitrary style transfer (day → night)
Metrics feature-level image-level

FID ↓ 79.697 80.618
IS ↑ 2.203 2.182

Table 8. The quantitative evaluation on ablation studies of feature-level (FADE)/
image-level (SPADE) injection for supervised semantic image synthesis (Cityscapes).
A higher mIoU, a higher pixel accuracy (accu) and a lower FID indicate better perfor-
mance.

semantic image synthesis (Cityscapes)
Metrics feature-level image-level

mIoU ↑ 65.9 59.7
accu ↑ 82.7 81.7
FID ↓ 59.2 60.1

E More Examples of Generated Images

We show more examples of generated results by our method in Fig. 11 and
Fig. 12. Several generated images of arbitrary style transfer, covering diverse
scenarios, are presented in Fig. 11. We also show more synthesized exmaples of
semantic image synthesis in Fig. 12. These examples feature both outdoor and
indoor scenes, generated from the corresponding semantic segmentation label
maps. All the images synthesized by our proposed method are very photorealis-
tic.
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Fig. 11. More examples of images generated by our method in the arbitrary style
transfer task (unsupervised). Rows 1-3 show Yosemite summer→ winter season transfer
results. Rows 4-6 are BDD100K day→ night translation results. Rows 7-9 present photo
→ art style transfer results.
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Fig. 12. More examples of images generated by our method in the semantic image
synthesis task (supervised). Row 1 and 2 show generated results on Cityscapes dataset.
Row 3 and 4 are outdoor synthesized results on ADE20K dataset. Row 5 and 6 present
indoor synthesized results on ADE20K dataset.


